science このプロダクトまたは機能は、試験運用版(pre-GA)です。一般提供前のプロダクトと機能では、サポートが制限されることがあります。また、一般提供前のプロダクトや機能の変更は、他の一般提供前のバージョンと互換性がない場合があります。pre-GA のサービスには、
Google Maps Platform サービス固有の規約が適用されます。詳細については、
リリース ステージの説明をご覧ください。
登録してプレイス分析情報をお試しください。
PLACES_COUNT 関数
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
PLACES_COUNT
関数は、指定された検索エリアと検索フィルタに基づいて、場所の単一のカウント値を返します。PLACES_COUNT
関数に検索エリアを指定する必要があります。必要に応じて、場所のタイプ、営業状況、価格帯などの追加のフィルタ パラメータを指定できます。
PLACES_COUNT
関数は単一の値を返すため、SELECT
句を使用して呼び出します。
例: 検索半径内の場所の数を計算する
最もシンプルな PLACES_COUNT
関数呼び出しは、地理的エリア内のすべての場所の単一のカウントを返します。この例では、エンパイア ステート ビルディングから 1, 000 メートル以内のすべての営業所の数を返します。
この例では、BigQuery の ST_GEOGPOINT
関数を使用して、ポイントから GEOGRAPHY
値を返します。
SELECT `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(
JSON_OBJECT(
'geography', ST_GEOGPOINT(-73.9857, 40.7484), -- Empire State Building
'geography_radius', 1000 -- Radius in meters
)
) as count;
レスポンスには単一のカウントが含まれます。

より一般的な呼び出しでは、検索範囲にフィルタが適用されます。次の例では、フィルタを使用して検索を制限し、次のカウントのみを返します。
- タイプ
restaurant
の場所で、最低評価が 3 の場所
- 料金レベルが「安い」または「普通」
- 現在運用中
- 犬の同伴可能
SELECT `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(
JSON_OBJECT(
'geography', ST_GEOGPOINT(-73.9857, 40.7484), -- Empire State Building
'geography_radius', 1000, -- Radius in meters
'types', ["restaurant"],
'min_rating', 3,
'price_level', ['PRICE_LEVEL_INEXPENSIVE', 'PRICE_LEVEL_MODERATE'],
'business_status', ['OPERATIONAL'],
'allows_dogs', TRUE
)
) as count;
フィルタされたレスポンス:

プレイス データセットのクエリでは、最小カウントしきい値が 5 に設定されていることに注意してください。場所のカウント関数の利点の 1 つは、0 を含む任意のカウントを返すことができることです。たとえば、次の呼び出しは 1 を返します。
SELECT `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(
JSON_OBJECT(
'geography', ST_GEOGPOINT(-73.9857, 40.7484), -- Empire State Building
'geography_radius', 500, -- Radius in meters
'types', ["restaurant"],
'min_rating', 4.0,
'free_parking_lot', TRUE,
'good_for_watching_sports', TRUE
)
) as count;
例: ポリゴンを使用してレストランの数を計算する
検索エリアを指定するには、ポリゴンを使用します。ポリゴンを使用する場合、ポリゴンの点は閉じたループを定義する必要があります。ポリゴンの最初の点は最後の点と同じです。
この例では、BigQuery の ST_GEOGFROMTEXT
関数を使用して、ポリゴンから GEOGRAPHY
値を返します。
DECLARE geo GEOGRAPHY;
SET geo = ST_GEOGFROMTEXT('''POLYGON((-73.985708 40.75773,-73.993324 40.750298,
-73.9857 40.7484,-73.9785 40.7575,
-73.985708 40.75773))'''); -- NYC viewport
SELECT `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(
JSON_OBJECT(
'geography',geo, -- viewport
'types', ["restaurant"],
'min_rating', 1.0,
'max_rating', 4.5,
'min_user_rating_count', 1,
'max_user_rating_count', 10000,
'price_level', ['PRICE_LEVEL_INEXPENSIVE', 'PRICE_LEVEL_MODERATE'],
'business_status', ['OPERATIONAL'],
'allows_dogs', TRUE
)
) as count;
ビューポートのレスポンス:

例: 線を使用してレストランの数を計算する
次の例では、線を中心とした半径 100 メートルの検索範囲を、線で結ばれた一連のポイントを使用して定義します。この線は、Routes API で計算された移動ルートに似ています。ルートは、車両、自転車、歩行者のいずれかになります。
DECLARE geo GEOGRAPHY;
SET geo = ST_GEOGFROMTEXT('LINESTRING(-73.98903537033028 40.73655649223003,-73.93580216278471 40.80955538843361)'); -- NYC line
SELECT `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(
JSON_OBJECT(
'geography',geo, -- line
'geography_radius', 100, -- Radius around line
'types', ["restaurant"],
'min_rating', 1.0,
'max_rating', 4.5,
'min_user_rating_count', 1,
'max_user_rating_count', 10000,
'price_level', ['PRICE_LEVEL_INEXPENSIVE', 'PRICE_LEVEL_MODERATE'],
'business_status', ['OPERATIONAL'],
'allows_dogs', TRUE
)
) as count;
行のレスポンス:

例: 複数の呼び出しの結果を結合する
PLACES_COUNT
関数への複数の呼び出しの結果を組み合わせることができます。たとえば、特定のエリア内の次の価格帯のレストランの数を 1 つの結果で表示したいとします。
PRICE_LEVEL_INEXPENSIVE
PRICE_LEVEL_MODERATE
PRICE_LEVEL_EXPENSIVE
PRICE_LEVEL_VERY_EXPENSIVE"
この例では、価格レベルごとに PLACES_COUNT
関数を呼び出すループを作成し、各呼び出しの結果を一時テーブルに挿入します。次に、一時テーブルに対してクエリを実行して結果を表示します。
-- Create a temp table to hold the results.
CREATE TEMP TABLE results (type STRING, count INT64);
-- Create a loop that calls PLACES_COUNT for each price level.
FOR types IN (SELECT type FROM UNNEST(["PRICE_LEVEL_INEXPENSIVE", "PRICE_LEVEL_MODERATE", "PRICE_LEVEL_EXPENSIVE", "PRICE_LEVEL_VERY_EXPENSIVE"]) as type)
DO
INSERT INTO results VALUES (types.type, `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(
JSON_OBJECT(
'types', ["restaurant"],
'geography', ST_GEOGPOINT(-73.9857, 40.7484), -- Empire State Building
'geography_radius', 1000, -- Radius in meters
'business_status', ['OPERATIONAL'],
'price_level', [types.type]
)));
END FOR;
-- Query the table of results.
SELECT * FROM results;
結合されたレスポンス:

別の方法として、UNION ALL
コマンドを使用して複数の SELECT
ステートメントの結果を結合することもできます。次の例は、前の例と同じ結果を示しています。
SELECT "PRICE_LEVEL_INEXPENSIVE" as price_level, `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(
JSON_OBJECT(
'types', ["restaurant"],
'geography', ST_GEOGPOINT(-73.9857, 40.7484), -- Empire State Building
'geography_radius', 1000, -- Radius in meters
'business_status', ['OPERATIONAL'],
'price_level', ['PRICE_LEVEL_INEXPENSIVE']
)
) as count
UNION ALL
SELECT "PRICE_LEVEL_MODERATE" as price_level, `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(
JSON_OBJECT(
'types', ["restaurant"],
'geography', ST_GEOGPOINT(-73.9857, 40.7484), -- Empire State Building
'geography_radius', 1000, -- Radius in meters
'business_status', ['OPERATIONAL'],
'price_level', ['PRICE_LEVEL_MODERATE']
)
) as count
UNION ALL
SELECT "PRICE_LEVEL_EXPENSIVE" as price_level, `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(
JSON_OBJECT(
'types', ["restaurant"],
'geography', ST_GEOGPOINT(-73.9857, 40.7484), -- Empire State Building
'geography_radius', 1000, -- Radius in meters
'business_status', ['OPERATIONAL'],
'price_level', ['PRICE_LEVEL_EXPENSIVE']
)
) as count
UNION ALL
SELECT "PRICE_LEVEL_VERY_EXPENSIVE" as price_level, `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(
JSON_OBJECT(
'types', ["restaurant"],
'geography', ST_GEOGPOINT(-73.9857, 40.7484), -- Empire State Building
'geography_radius', 1000, -- Radius in meters
'business_status', ['OPERATIONAL'],
'price_level', ['PRICE_LEVEL_VERY_EXPENSIVE']
)
) as count
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-17 UTC。
[null,null,["最終更新日 2025-07-17 UTC。"],[],[],null,["The `PLACES_COUNT` function returns a single count value of places based on the\nspecified search area and search filters. You must specify the search area to\nthe `PLACES_COUNT` function and can optionally specify additional filter\nparameters, such as place type, operating status, price level, and more.\n\nBecause the `PLACES_COUNT` function returns a single value, call it using\na `SELECT` clause.\n\n- Input parameters:\n\n - **Required** : The `geography` [filter parameter](/maps/documentation/placesinsights/experimental/filter-params) that\n specifies the search area. The `geography` parameter takes a value defined\n by the BigQuery\n [`GEOGRAPHY`](https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#geography_type)\n data type, which supports points, linestrings, and polygons.\n\n - **Optional** : Additional [filter](/maps/documentation/placesinsights/experimental/filter-params) parameters to refine your\n search.\n\n- Returns:\n\n - A single `count` value as an `INT64`.\n\nExample: Calculate the number of places in a search radius\n\nThe simplest `PLACES_COUNT` function call returns a single count of all places\nin a geographical area. In this example, you return the count of all operational\nplaces within 1000 meters of the Empire State building.\n\nThis example uses the BigQuery\n[`ST_GEOGPOINT`](https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_geogpoint)\nfunction to return a `GEOGRAPHY` value from a point. \n\n```googlesql\nSELECT `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(\n JSON_OBJECT(\n 'geography', ST_GEOGPOINT(-73.9857, 40.7484), -- Empire State Building\n 'geography_radius', 1000 -- Radius in meters\n )\n) as count;\n```\n\nThe response contains a single count:\n\nA more typical call applies filters to the search area. The next example uses\nfilters to limit the search to only return a count of:\n\n- Places of type `restaurant` with the minimum rating of 3\n- A price level of inexpensive or medium\n- Currently operational\n- Allows dogs\n\n```googlesql\nSELECT `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(\n JSON_OBJECT(\n 'geography', ST_GEOGPOINT(-73.9857, 40.7484), -- Empire State Building\n 'geography_radius', 1000, -- Radius in meters\n 'types', [\"restaurant\"],\n 'min_rating', 3,\n 'price_level', ['PRICE_LEVEL_INEXPENSIVE', 'PRICE_LEVEL_MODERATE'],\n 'business_status', ['OPERATIONAL'],\n 'allows_dogs', TRUE\n )\n) as count;\n```\n\nThe filtered response:\n\nRemember that place dataset queries enforce a minimum count threshold of\n5. One of the advantages of the place count functions is\nthat they can return any counts, including 0. For example, the following call\nreturns a count of 1: \n\n```googlesql\nSELECT `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(\n JSON_OBJECT(\n 'geography', ST_GEOGPOINT(-73.9857, 40.7484), -- Empire State Building\n 'geography_radius', 500, -- Radius in meters\n 'types', [\"restaurant\"],\n 'min_rating', 4.0,\n 'free_parking_lot', TRUE,\n 'good_for_watching_sports', TRUE\n )\n) as count;\n```\n\nExample: Calculate the number of restaurants using a polygon\n\nYou can use a polygon to specify the search area. When using a polygon,\nthe points of the polygon must define a closed loop where the first point in the\npolygon is the same as the last point.\n\nThis example uses the BigQuery\n[`ST_GEOGFROMTEXT`](https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions#st_geogfromtext)\nfunction to return a `GEOGRAPHY` value from a polygon. \n\n```googlesql\nDECLARE geo GEOGRAPHY;\nSET geo = ST_GEOGFROMTEXT('''POLYGON((-73.985708 40.75773,-73.993324 40.750298,\n -73.9857 40.7484,-73.9785 40.7575,\n -73.985708 40.75773))'''); -- NYC viewport\n\nSELECT `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(\n JSON_OBJECT(\n 'geography',geo, -- viewport \n 'types', [\"restaurant\"],\n 'min_rating', 1.0,\n 'max_rating', 4.5,\n 'min_user_rating_count', 1,\n 'max_user_rating_count', 10000,\n 'price_level', ['PRICE_LEVEL_INEXPENSIVE', 'PRICE_LEVEL_MODERATE'],\n 'business_status', ['OPERATIONAL'],\n 'allows_dogs', TRUE\n )\n) as count;\n```\n\nThe response for the viewport:\n\nExample: Calculate the number of restaurants using a line\n\nIn the next example, you define the search area using a line of connected\npoints with a search radius of 100 meters around the line.\nThe line is similar to a travel route calculated by the [Routes\nAPI](/maps/documentation/routes). The route might be for a vehicle, a bicycle,\nor for a pedestrian: \n\n```googlesql\nDECLARE geo GEOGRAPHY;\nSET geo = ST_GEOGFROMTEXT('LINESTRING(-73.98903537033028 40.73655649223003,-73.93580216278471 40.80955538843361)'); -- NYC line\n\nSELECT `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(\n JSON_OBJECT(\n 'geography',geo, -- line\n 'geography_radius', 100, -- Radius around line\n 'types', [\"restaurant\"],\n 'min_rating', 1.0,\n 'max_rating', 4.5,\n 'min_user_rating_count', 1,\n 'max_user_rating_count', 10000,\n 'price_level', ['PRICE_LEVEL_INEXPENSIVE', 'PRICE_LEVEL_MODERATE'],\n 'business_status', ['OPERATIONAL'],\n 'allows_dogs', TRUE\n )\n) as count;\n```\n\nThe response for the line:\n\nExample: Combine the results of multiple calls\n\nYou can combine the results of multiple calls to the `PLACES_COUNT` function.\nFor example, you want a single result showing the number of restaurants for\nthe following price levels within a specific area:\n\n- `PRICE_LEVEL_INEXPENSIVE`\n- `PRICE_LEVEL_MODERATE`\n- `PRICE_LEVEL_EXPENSIVE`\n- `PRICE_LEVEL_VERY_EXPENSIVE\"`\n\nIn this example, you create a loop to call the `PLACES_COUNT` function for each\nprice level, and insert the results of each call to a temporary table. You then\nquery the temporary table to display the results: \n\n```googlesql\n-- Create a temp table to hold the results.\nCREATE TEMP TABLE results (type STRING, count INT64);\n\n-- Create a loop that calls PLACES_COUNT for each price level.\nFOR types IN (SELECT type FROM UNNEST([\"PRICE_LEVEL_INEXPENSIVE\", \"PRICE_LEVEL_MODERATE\", \"PRICE_LEVEL_EXPENSIVE\", \"PRICE_LEVEL_VERY_EXPENSIVE\"]) as type)\nDO\n INSERT INTO results VALUES (types.type, `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(\n JSON_OBJECT(\n 'types', [\"restaurant\"],\n 'geography', ST_GEOGPOINT(-73.9857, 40.7484), -- Empire State Building\n 'geography_radius', 1000, -- Radius in meters\n 'business_status', ['OPERATIONAL'],\n 'price_level', [types.type]\n )));\nEND FOR;\n\n-- Query the table of results.\nSELECT * FROM results;\n```\n\nThe combined response:\n\nAnother option is to use the `UNION ALL` command to combine the results of\nmultiple `SELECT` statements. The following example shows the same results as\nfrom the previous example: \n\n```googlesql\nSELECT \"PRICE_LEVEL_INEXPENSIVE\" as price_level, `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(\n JSON_OBJECT(\n 'types', [\"restaurant\"],\n 'geography', ST_GEOGPOINT(-73.9857, 40.7484), -- Empire State Building\n 'geography_radius', 1000, -- Radius in meters\n 'business_status', ['OPERATIONAL'],\n 'price_level', ['PRICE_LEVEL_INEXPENSIVE']\n )\n) as count\n\nUNION ALL\n\nSELECT \"PRICE_LEVEL_MODERATE\" as price_level, `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(\n JSON_OBJECT(\n 'types', [\"restaurant\"],\n 'geography', ST_GEOGPOINT(-73.9857, 40.7484), -- Empire State Building\n 'geography_radius', 1000, -- Radius in meters\n 'business_status', ['OPERATIONAL'],\n 'price_level', ['PRICE_LEVEL_MODERATE']\n )\n) as count\n\nUNION ALL\n\nSELECT \"PRICE_LEVEL_EXPENSIVE\" as price_level, `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(\n JSON_OBJECT(\n 'types', [\"restaurant\"],\n 'geography', ST_GEOGPOINT(-73.9857, 40.7484), -- Empire State Building\n 'geography_radius', 1000, -- Radius in meters\n 'business_status', ['OPERATIONAL'],\n 'price_level', ['PRICE_LEVEL_EXPENSIVE']\n )\n) as count\n\nUNION ALL\n\nSELECT \"PRICE_LEVEL_VERY_EXPENSIVE\" as price_level, `maps-platform-analytics-hub.sample_places_insights_us.PLACES_COUNT`(\n JSON_OBJECT(\n 'types', [\"restaurant\"],\n 'geography', ST_GEOGPOINT(-73.9857, 40.7484), -- Empire State Building\n 'geography_radius', 1000, -- Radius in meters\n 'business_status', ['OPERATIONAL'],\n 'price_level', ['PRICE_LEVEL_VERY_EXPENSIVE']\n )\n) as count\n```"]]