Entitäten mit ML Kit für iOS extrahieren

Wenn Sie einen Text analysieren und die darin enthaltenen Entitäten extrahieren möchten, rufen Sie die ML Kit Entity Extraction API auf, indem Sie den Text direkt an die annotateText:completion:-Methode übergeben. Es ist auch möglich, ein optionales EntityExtractionParams-Objekt mit anderen Konfigurationsoptionen wie einer Referenzzeit, einer Zeitzone oder einem Filter anzugeben, um die Suche auf eine Teilmenge von Entitätstypen einzuschränken. Die API gibt eine Liste von EntityAnnotation-Objekten mit Informationen zu den einzelnen Entitäten zurück.

Die Basis-Detektor-Assets für die Entitätenextraktion werden zur Laufzeit der App statisch verknüpft. Sie erhöhen die Größe Ihrer App um etwa 10,7 MB.

Jetzt ausprobieren

Hinweis

  1. Fügen Sie Ihrer Podfile-Datei die folgenden ML Kit-Bibliotheken hinzu:

    pod 'GoogleMLKit/EntityExtraction', '7.0.0'
    
  2. Nachdem Sie die Pods Ihres Projekts installiert oder aktualisiert haben, öffnen Sie Ihr Xcode-Projekt mit der .xcworkspace-Datei. ML Kit wird in Xcode Version 13.2.1 oder höher unterstützt.

Entitäten aus Text extrahieren

Wenn Sie Entitäten aus Text extrahieren möchten, erstellen Sie zuerst ein EntityExtractorOptions-Objekt, indem Sie die Sprache angeben, und verwenden Sie dieses, um ein EntityExtractor zu instanziieren:

Swift

// Note: You can specify any of the 15 languages entity extraction supports here. 
let options = EntityExtractorOptions(modelIdentifier: 
                                    EntityExtractionModelIdentifier.english)
let entityExtractor = EntityExtractor.entityExtractor(options: options)

Objective-C

// Note: You can specify any of the 15 languages entity extraction supports here. 
MLKEntityExtractorOptions *options = 
    [[MLKEntityExtractorOptions alloc] 
        initWithModelIdentifier:MLKEntityExtractionModelIdentifierEnglish];

MLKEntityExtractor *entityExtractor = 
    [MLKEntityExtractor entityExtractorWithOptions:options];

Achten Sie als Nächstes darauf, dass das erforderliche Language Model auf das Gerät heruntergeladen wird:

Swift

entityExtractor.downloadModelIfNeeded(completion: {
  // If the error is nil, the download completed successfully.
})

Objective-C

[entityExtractor downloadModelIfNeededWithCompletion:^(NSError *_Nullable error) {
    // If the error is nil, the download completed successfully.
}];

Nachdem das Modell heruntergeladen wurde, übergeben Sie der annotate-Methode einen String und optional MLKEntityExtractionParams.

Swift

// The EntityExtractionParams parameter is optional. Only instantiate and
// configure one if you need to customize one or more of its params.
var params = EntityExtractionParams()
// The params object contains the following properties which can be customized on
// each annotateText: call. Please see the class's documentation for a more
// detailed description of what each property represents.
params.referenceTime = Date();
params.referenceTimeZone = TimeZone(identifier: "GMT");
params.preferredLocale = Locale(identifier: "en-US");
params.typesFilter = Set([EntityType.address, EntityType.dateTime])

extractor.annotateText(
    text.string,
    params: params,
    completion: {
      result, error in
      // If the error is nil, the annotation completed successfully and any results 
      // will be contained in the `result` array.
    }
)

Objective-C

// The MLKEntityExtractionParams property is optional. Only instantiate and
// configure one if you need to customize one or more of its params.
MLKEntityExtractionParams *params = [[MLKEntityExtractionParams alloc] init];
// The params object contains the following properties which can be customized on
// each annotateText: call. Please see the class's documentation for a fuller 
// description of what each property represents.
params.referenceTime = [NSDate date];
params.referenceTimeZone = [NSTimeZone timeZoneWithAbbreviation:@"GMT"];
params.preferredLocale = [NSLocale localWithLocaleIdentifier:@"en-US"];
params.typesFilter = 
    [NSSet setWithObjects:MLKEntityExtractionEntityTypeAddress, 
                          MLKEntityExtractionEntityTypeDateTime, nil];

[extractor annotateText:text.string
             withParams:params
             completion:^(NSArray *_Nullable result, NSError *_Nullable error) {
  // If the error is nil, the annotation completed successfully and any results 
  // will be contained in the `result` array.
}

Gehen Sie die Anmerkungsergebnisse durch, um Informationen zu den erkannten Entitäten abzurufen.

Swift

// let annotations be the Array! returned from EntityExtractor
for annotation in annotations {
  let entities = annotation.entities
  for entity in entities {
    switch entity.entityType {
      case EntityType.dateTime:
        guard let dateTimeEntity = entity.dateTimeEntity else {
          print("This field should be populated.")
          return
        }
        print("Granularity: %d", dateTimeEntity.dateTimeGranularity)
        print("DateTime: %@", dateTimeEntity.dateTime)
      case EntityType.flightNumber:
        guard let flightNumberEntity = entity.flightNumberEntity else {
          print("This field should be populated.")
          return
        }
        print("Airline Code: %@", flightNumberEntity.airlineCode)
        print("Flight number: %@", flightNumberEntity.flightNumber)
      case EntityType.money:
        guard let moneyEntity = entity.moneyEntity else {
          print("This field should be populated.")
          return
        }
        print("Currency: %@", moneyEntity.integerPart)
        print("Integer Part: %d", moneyEntity.integerPart)
        print("Fractional Part: %d", moneyEntity.fractionalPart)
      // Add additional cases as needed.
      default:
        print("Entity: %@", entity);
    }
  }
}

Objective-C

NSArray *annotations; // Returned from EntityExtractor

for (MLKEntityAnnotation *annotation in annotations) {
            NSArray *entities = annotation.entities;
            NSLog(@"Range: [%d, %d)", (int)annotation.range.location, (int)(annotation.range.location + annotation.range.length));
            for (MLKEntity *entity in entities) {
              if ([entity.entityType isEqualToString:MLKEntityExtractionEntityTypeDateTime]) {
                MLKDateTimeEntity *dateTimeEntity = entity.dateTimeEntity;
                NSLog(@"Granularity: %d", (int)dateTimeEntity.dateTimeGranularity);
                NSLog(@"DateTime: %@", dateTimeEntity.dateTime);
                break;
              } else if ([entity.entityType isEqualToString:MLKEntityExtractionEntityTypeFlightNumber]) {
                MLKFlightNumberEntity *flightNumberEntity = entity.flightNumberEntity;
                NSLog(@"Airline Code: %@", flightNumberEntity.airlineCode);
                NSLog(@"Flight number: %@", flightNumberEntity.flightNumber);
                break;
              } else if ([entity.entityType isEqualToString:MLKEntityExtractionEntityTypeMoney]) {
                MLKMoneyEntity *moneyEntity = entity.moneyEntity;
                NSLog(@"Currency: %@", moneyEntity.unnormalizedCurrency);
                NSLog(@"Integer Part: %d", (int)moneyEntity.integerPart);
                NSLog(@"Fractional Part: %d", (int)moneyEntity.fractionalPart);
                break;
              } else {
                // Add additional cases as needed.
                NSLog(@"Entity: %@", entity);
              }
            }