Puedes usar ML Kit para reconocer y decodificar códigos de barras.
Función | Sin agrupar | Red de Búsqueda y Red de Display |
---|---|---|
Implementación | El modelo se descarga de forma dinámica a través de los Servicios de Google Play. | El modelo se vincula de forma estática a tu app en el tiempo de compilación. |
Tamaño de la app | Aumenta el tamaño en aproximadamente 200 KB. | Aumenta el tamaño en aproximadamente 2.4 MB. |
Hora de inicialización | Es posible que debas esperar a que se descargue el modelo antes de usarlo por primera vez. | El modelo está disponible de inmediato. |
Probar
- Prueba la app de ejemplo para ver un ejemplo de uso de esta API.
- Consulta la aplicación de demostración de Material Design para ver una implementación de extremo a extremo de esta API.
Antes de comenzar
En tu archivo
build.gradle
de nivel de proyecto, asegúrate de incluir el repositorio Maven de Google en las seccionesbuildscript
yallprojects
.Agrega las dependencias para las bibliotecas de Android de ML Kit al archivo Gradle a nivel de la app de tu módulo, que suele ser
app/build.gradle
. Elige una de las siguientes dependencias según tus necesidades:Para empaquetar el modelo con tu app, sigue estos pasos:
dependencies { // ... // Use this dependency to bundle the model with your app implementation 'com.google.mlkit:barcode-scanning:17.3.0' }
Para usar el modelo en los Servicios de Google Play, haz lo siguiente:
dependencies { // ... // Use this dependency to use the dynamically downloaded model in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-barcode-scanning:18.3.1' }
Si decides usar el modelo en los Servicios de Google Play, puedes configurar tu app para que descargue automáticamente el modelo en el dispositivo después de instalarla desde Play Store. Para ello, agrega la siguiente declaración al archivo
AndroidManifest.xml
de tu app:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="barcode" > <!-- To use multiple models: android:value="barcode,model2,model3" --> </application>
También puedes verificar de forma explícita la disponibilidad del modelo y solicitar la descarga a través de la API de ModuleInstallClient de los Servicios de Google Play.
Si no habilitas las descargas de modelos en el momento de la instalación ni solicitas una descarga explícita, el modelo se descargará la primera vez que ejecutes el escáner. Las solicitudes que realices antes de que se complete la descarga no generarán ningún resultado.
Lineamientos para imágenes de entrada
-
Para que el Kit de AA lea códigos de barras con precisión, las imágenes de entrada deben contener códigos de barras representados con datos de píxeles suficientes.
Los requisitos específicos de datos de píxeles dependen del tipo de código de barras y de la cantidad de datos codificados en él, ya que muchos códigos de barras admiten una carga útil de tamaño variable. Por lo general, la unidad mínima de significado de un código de barras debe tener al menos 2 píxeles de ancho y, en códigos de 2 dimensiones, 2 píxeles de altura.
Por ejemplo, los códigos de barras EAN-13 contienen barras y espacios con 1, 2, 3 o 4 unidades de ancho, por lo que una imagen de código de barras EAN-13 tiene, idealmente, barras y espacios de al menos 2, 4, 6 y 8 píxeles de ancho. Debido a que un código de barras EAN-13 tiene un ancho de 95 unidades en total, el código de barras deberá tener al menos 190 píxeles de ancho.
Los formatos más densos, como PDF417, requieren mayores dimensiones de píxeles para que el Kit de AA pueda leerlas de forma confiable. Por ejemplo, un código PDF417 puede tener hasta 34 “palabras” de 17 unidades de ancho en una sola fila, que idealmente tendrá un ancho de 1156 píxeles.
-
Un enfoque de imagen deficiente puede afectar la exactitud del escaneo. Si tu app no obtiene resultados aceptables, pídele al usuario que vuelva a capturar la imagen.
-
Para aplicaciones típicas, se recomienda proporcionar una imagen de mayor resolución, como 1280 x 720 o 1920 x 1080, lo que hace que los códigos de barras sean escaneables a mayor distancia de la cámara.
Sin embargo, en aplicaciones en las que la latencia es fundamental, puedes mejorar el rendimiento si capturas imágenes con una resolución más baja, en las que el código de barras constituya la mayor parte de la imagen de entrada. Consulta también Sugerencias para mejorar el rendimiento en tiempo real.
1. Configura el escáner de códigos de barras
Si sabes qué formatos de códigos de barras leerás, puedes configurar el detector de códigos de barras para que solo detecte esos formatos a fin de aumentar su velocidad.Por ejemplo, para detectar solo códigos QR y Aztec, crea un objeto
BarcodeScannerOptions
como el del siguiente ejemplo:
Kotlin
val options = BarcodeScannerOptions.Builder() .setBarcodeFormats( Barcode.FORMAT_QR_CODE, Barcode.FORMAT_AZTEC) .build()
Java
BarcodeScannerOptions options = new BarcodeScannerOptions.Builder() .setBarcodeFormats( Barcode.FORMAT_QR_CODE, Barcode.FORMAT_AZTEC) .build();
Se admiten los siguientes formatos:
- Code 128 (
FORMAT_CODE_128
) - Code 39 (
FORMAT_CODE_39
) - Code 93 (
FORMAT_CODE_93
) - Codabar (
FORMAT_CODABAR
) - EAN-13 (
FORMAT_EAN_13
) - EAN-8 (
FORMAT_EAN_8
) - ITF (
FORMAT_ITF
) - UPC-A (
FORMAT_UPC_A
) - UPC-E (
FORMAT_UPC_E
) - Código QR (
FORMAT_QR_CODE
) - PDF417 (
FORMAT_PDF417
) - Aztec (
FORMAT_AZTEC
) - Data Matrix (
FORMAT_DATA_MATRIX
)
A partir del modelo empaquetado 17.1.0 y del modelo sin empaquetar 18.2.0, también puedes llamar a enableAllPotentialBarcodes()
para mostrar todos los posibles códigos de barras, incluso si no se pueden decodificar. Esto se puede usar para facilitar una detección adicional, por ejemplo, si acercas la cámara para obtener una imagen más clara de cualquier código de barras en el cuadro de límite que se muestra.
Kotlin
val options = BarcodeScannerOptions.Builder() .setBarcodeFormats(...) .enableAllPotentialBarcodes() // Optional .build()
Java
BarcodeScannerOptions options = new BarcodeScannerOptions.Builder() .setBarcodeFormats(...) .enableAllPotentialBarcodes() // Optional .build();
Further on, starting from bundled library 17.2.0 and unbundled library 18.3.0, a new feature called auto-zoom has been introduced to further enhance the barcode scanning experience. With this feature enabled, the app is notified when all barcodes within the view are too distant for decoding. As a result, the app can effortlessly adjust the camera's zoom ratio to the recommended setting provided by the library, ensuring optimal focus and readability. This feature will significantly enhance the accuracy and success rate of barcode scanning, making it easier for apps to capture information precisely.
To enable auto-zooming and customize the experience, you can utilize the
setZoomSuggestionOptions()
method along with your
own ZoomCallback
handler and desired maximum zoom
ratio, as demonstrated in the code below.
Kotlin
val options = BarcodeScannerOptions.Builder() .setBarcodeFormats(...) .setZoomSuggestionOptions( new ZoomSuggestionOptions.Builder(zoomCallback) .setMaxSupportedZoomRatio(maxSupportedZoomRatio) .build()) // Optional .build()
Java
BarcodeScannerOptions options = new BarcodeScannerOptions.Builder() .setBarcodeFormats(...) .setZoomSuggestionOptions( new ZoomSuggestionOptions.Builder(zoomCallback) .setMaxSupportedZoomRatio(maxSupportedZoomRatio) .build()) // Optional .build();
zoomCallback
is required to be provided to handle whenever the library
suggests a zoom should be performed and this callback will always be called on
the main thread.
The following code snippet shows an example of defining a simple callback.
Kotlin
fun setZoom(ZoomRatio: Float): Boolean { if (camera.isClosed()) return false camera.getCameraControl().setZoomRatio(zoomRatio) return true }
Java
boolean setZoom(float zoomRatio) { if (camera.isClosed()) { return false; } camera.getCameraControl().setZoomRatio(zoomRatio); return true; }
maxSupportedZoomRatio
is related to the camera hardware, and different camera
libraries have different ways to fetch it (see the javadoc of the setter
method). In case this is not provided, an
unbounded zoom ratio might be produced by the library which might not be
supported. Refer to the
setMaxSupportedZoomRatio()
method
introduction to see how to get the max supported zoom ratio with different
Camera libraries.
When auto-zooming is enabled and no barcodes are successfully decoded within
the view, BarcodeScanner
triggers your zoomCallback
with the requested
zoomRatio
. If the callback correctly adjusts the camera to this zoomRatio
,
it is highly probable that the most centered potential barcode will be decoded
and returned.
A barcode may remain undecodable even after a successful zoom-in. In such cases,
BarcodeScanner
may either invoke the callback for another round of zoom-in
until the maxSupportedZoomRatio
is reached, or provide an empty list (or a
list containing potential barcodes that were not decoded, if
enableAllPotentialBarcodes()
was called) to the OnSuccessListener
(which
will be defined in step 4. Process the image).
2. Prepare the input image
To recognize barcodes in an image, create anInputImage
object
from either a Bitmap
, media.Image
, ByteBuffer
, byte array, or a file on
the device. Then, pass the InputImage
object to the
BarcodeScanner
's process
method.
You can create an InputImage
object from different sources, each is explained below.
Using a media.Image
To create an InputImage
object from a media.Image
object, such as when you capture an image from a
device's camera, pass the media.Image
object and the image's
rotation to InputImage.fromMediaImage()
.
If you use the
CameraX library, the OnImageCapturedListener
and
ImageAnalysis.Analyzer
classes calculate the rotation value
for you.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Si no usas una biblioteca de cámaras que te proporcione el grado de rotación de la imagen, puedes calcularla a partir de la rotación del dispositivo y la orientación del sensor de la cámara en el dispositivo:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Luego, pasa el objeto media.Image
y el valor de grado de rotación a InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Usa un URI de archivo
Para crear un objeto InputImage
a partir de un URI de archivo, pasa el contexto de la app y el URI del archivo a InputImage.fromFilePath()
. Esto es útil cuando usas un intent ACTION_GET_CONTENT
para solicitarle al usuario que seleccione una imagen de su app de galería.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Usa ByteBuffer
o ByteArray
Para crear un objeto InputImage
a partir de un ByteBuffer
o un ByteArray
, primero calcula el grado de rotación de la imagen como se describió anteriormente en la entrada media.Image
.
Luego, crea el objeto InputImage
con el búfer o el array, junto con la altura,
el ancho, el formato de codificación de color y el grado de rotación de la imagen:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Usa un Bitmap
Para crear un objeto InputImage
a partir de un objeto Bitmap
, realiza la siguiente declaración:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
La imagen está representada por un objeto Bitmap
junto con los grados de rotación.
3. Obtén una instancia de BarcodeScanner
Kotlin
val scanner = BarcodeScanning.getClient() // Or, to specify the formats to recognize: // val scanner = BarcodeScanning.getClient(options)
Java
BarcodeScanner scanner = BarcodeScanning.getClient(); // Or, to specify the formats to recognize: // BarcodeScanner scanner = BarcodeScanning.getClient(options);
4. Procesa la imagen
Pasa la imagen al métodoprocess
:
Kotlin
val result = scanner.process(image) .addOnSuccessListener { barcodes -> // Task completed successfully // ... } .addOnFailureListener { // Task failed with an exception // ... }
Java
Task<List<Barcode>> result = scanner.process(image) .addOnSuccessListener(new OnSuccessListener<List<Barcode>>() { @Override public void onSuccess(List<Barcode> barcodes) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
5. Obtén información de códigos de barras
Si la operación de reconocimiento de código de barras se ejecuta correctamente, se pasará una lista de objetosBarcode
al objeto de escucha que detecta el resultado correcto. Cada objeto Barcode
representa un código de barras que se detectó en la imagen. Para cada código de barras, puedes obtener las coordenadas de sus límites en la imagen de entrada, junto con los datos sin procesar codificados en el código de barras. Además, si el escáner de códigos de barras pudo determinar el tipo de datos codificados en el código de barras, puedes obtener un objeto que contenga los datos analizados.
Por ejemplo:
Kotlin
for (barcode in barcodes) { val bounds = barcode.boundingBox val corners = barcode.cornerPoints val rawValue = barcode.rawValue val valueType = barcode.valueType // See API reference for complete list of supported types when (valueType) { Barcode.TYPE_WIFI -> { val ssid = barcode.wifi!!.ssid val password = barcode.wifi!!.password val type = barcode.wifi!!.encryptionType } Barcode.TYPE_URL -> { val title = barcode.url!!.title val url = barcode.url!!.url } } }
Java
for (Barcode barcode: barcodes) { Rect bounds = barcode.getBoundingBox(); Point[] corners = barcode.getCornerPoints(); String rawValue = barcode.getRawValue(); int valueType = barcode.getValueType(); // See API reference for complete list of supported types switch (valueType) { case Barcode.TYPE_WIFI: String ssid = barcode.getWifi().getSsid(); String password = barcode.getWifi().getPassword(); int type = barcode.getWifi().getEncryptionType(); break; case Barcode.TYPE_URL: String title = barcode.getUrl().getTitle(); String url = barcode.getUrl().getUrl(); break; } }
Sugerencias para mejorar el rendimiento en tiempo real
Si quieres escanear códigos de barras en una aplicación en tiempo real, sigue estos lineamientos para lograr la mejor velocidad de fotogramas por segundo:
-
No captures imágenes de entrada con la resolución nativa de la cámara. En algunos dispositivos, la captura en resolución nativa produce imágenes extremadamente grandes (más de 10 megapíxeles), lo que da como resultado una latencia muy pobre y una exactitud baja. En su lugar, solicita a la cámara el tamaño requerido para la detección de códigos de barras, que suele ser de no más de 2 megapíxeles.
Si la velocidad de escaneo es importante, puedes reducir aún más la resolución de captura de imagen. Sin embargo, ten en cuenta los requisitos mínimos de tamaño de códigos de barras descritos anteriormente.
Si intentas reconocer códigos de barras a partir de una secuencia de fotogramas de video continuos, el identificador podría producir resultados diferentes de un fotograma a otro. Debes esperar hasta obtener una serie consecutiva del mismo valor para asegurarte de que estás obteniendo un buen resultado.
El dígito de suma de comprobación no es compatible con ITF y CODE-39.
- Si usas la API de
Camera
ocamera2
, limita las llamadas al detector. Si hay un fotograma de video nuevo disponible mientras se ejecuta el detector, ignora ese fotograma. Consulta la claseVisionProcessorBase
de la app de ejemplo de la guía de inicio rápido para ver un ejemplo. - Si usas la API de
CameraX
, asegúrate de que la estrategia de contrapresión esté configurada en su valor predeterminadoImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. Esto garantiza que solo se entregue una imagen para el análisis a la vez. Si se producen más imágenes cuando el analizador está ocupado, se descartarán automáticamente y no se pondrán en cola para la publicación. Una vez que se cierre la imagen que se está analizando llamando a ImageProxy.close(), se entregará la siguiente imagen más reciente. - Si usas la salida del detector para superponer gráficos en la imagen de entrada, primero obtén el resultado de ML Kit y, luego, procesa la imagen y la superposición en un solo paso. Esto se renderiza en la superficie de visualización solo una vez por cada fotograma de entrada. Consulta las clases
CameraSourcePreview
yGraphicOverlay
en la app de ejemplo de la guía de inicio rápido para ver un ejemplo. - Si usas la API de Camera2, captura imágenes en formato
ImageFormat.YUV_420_888
. Si usas la API de Camera más antigua, captura imágenes en formatoImageFormat.NV21
.
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2024-12-18 (UTC)