סריקת ברקודים באמצעות ML Kit ב-Android

אתם יכולים להשתמש ב-ML Kit כדי לזהות ולפענח קודי מ barras.

תכונהלא מקובציםבחבילה
הטמעההמודל מוריד באופן דינמי דרך Google Play Services.המודל מקושר באופן סטטי לאפליקציה בזמן ה-build.
גודל האפליקציההגודל יגדל בכ-200KB.הגודל יגדל בכ-2.4MB.
זמן האתחוליכול להיות שתצטרכו להמתין להורדת המודל לפני השימוש הראשון.המודל זמין באופן מיידי.

רוצה לנסות?

לפני שמתחילים

  1. בקובץ build.gradle ברמת הפרויקט, חשוב לכלול את מאגר Maven של Google גם בקטע buildscript וגם בקטע allprojects.

  2. מוסיפים את יחסי התלות של ספריות ML Kit ל-Android לקובץ ה-Gradle ברמת האפליקציה של המודול, שבדרך כלל נקרא app/build.gradle. בוחרים אחת מהתלות הבאות בהתאם לצרכים שלכם:

    כדי לצרף את המודל לאפליקציה:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:barcode-scanning:17.3.0'
    }
    

    כדי להשתמש במודל ב-Google Play Services:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-barcode-scanning:18.3.1'
    }
    
  3. אם בוחרים להשתמש במודל ב-Google Play Services, אפשר להגדיר שהאפליקציה תוריד את המודל למכשיר באופן אוטומטי אחרי ההתקנה שלה מחנות Play. כדי לעשות זאת, מוסיפים את ההצהרה הבאה לקובץ AndroidManifest.xml של האפליקציה:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="barcode" >
          <!-- To use multiple models: android:value="barcode,model2,model3" -->
    </application>
    

    אפשר גם לבדוק באופן מפורש את הזמינות של המודל ולבקש הורדה דרך ModuleInstallClient API של Google Play Services.

    אם לא מפעילים הורדות של מודלים בזמן ההתקנה או מבקשים הורדה מפורשת, המודלים יורדו בפעם הראשונה שתפעילו את הסורק. בקשות שתשלחו לפני שההורדה תושלם לא יחזירו תוצאות.

הנחיות לתמונות קלט

  • כדי ש-ML Kit יוכל לקרוא ברקודים בצורה מדויקת, תמונות הקלט חייבות להכיל ברקודים שמיוצגים על ידי מספיק נתוני פיקסלים.

    הדרישות הספציפיות לנתוני הפיקסלים תלויות גם בסוג הברקוד וגם בכמות הנתונים שמקודדים בו, כי הרבה ברקודים תומכים בתוכן טעון (payload) בגודל משתנה. באופן כללי, היחידה הקטנה ביותר של הברקוד שמשמעותית צריכה להיות ברוחב של לפחות 2 פיקסלים, ובקודים דו-ממדיים, בגובה של 2 פיקסלים.

    לדוגמה, קודי EAN-13 מורכבים מפסים ומרווחים ברוחב של יחידה אחת, שתיים, שלוש או ארבע. לכן, רצוי שתמונה של קוד EAN-13 תכלול פסים מרווחים ברוחב של לפחות 2, 4, 6 ו-8 פיקסלים. מכיוון שקוד הברקוד EAN-13 הוא ברוחב של 95 יחידות בסך הכול, רוחב הקוד צריך להיות לפחות 190 פיקסלים.

    בפורמטים צפופים יותר, כמו PDF417, צריך מידות פיקסלים גדולות יותר כדי ש-ML Kit יוכל לקרוא אותם בצורה מהימנה. לדוגמה, קוד PDF417 יכול לכלול עד 34 "מילים" ברוחב 17 יחידות בשורה אחת, שרוחב הרצוי שלה הוא לפחות 1,156 פיקסלים.

  • מיקוד לקוי של התמונה עלול להשפיע על דיוק הסריקה. אם האפליקציה לא מקבלת תוצאות סבירות, בקשו מהמשתמש לצלם מחדש את התמונה.

  • באפליקציות רגילות, מומלץ לספק תמונה ברזולוציה גבוהה יותר, כמו 1280x720 או 1920x1080, כדי שניתן יהיה לסרוק את הקודים המזהים ממרחק גדול יותר מהמצלמה.

    עם זאת, באפליקציות שבהן זמן האחזור קריטי, אפשר לשפר את הביצועים על ידי צילום תמונות ברזולוציה נמוכה יותר, אבל תוך דרישת שהברקוד יהווה את רוב התמונה. מומלץ לקרוא גם את המאמר טיפים לשיפור הביצועים בזמן אמת.

1. הגדרת סורק הברקודים

אם אתם יודעים אילו פורמטים של קודי מ barras אתם צפויים לקרוא, תוכלו לשפר את המהירות של גלאי קודי המ barras על ידי הגדרה שלו לזיהוי הפורמטים האלה בלבד.

לדוגמה, כדי לזהות רק קודי Aztec וקודי QR, יוצרים אובייקט BarcodeScannerOptions כמו בדוגמה הבאה:

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build();

הפורמטים הבאים נתמכים:

  • Code 128‏ (FORMAT_CODE_128)
  • Code 39‏ (FORMAT_CODE_39)
  • קוד 93 (FORMAT_CODE_93)
  • Codabar‏ (FORMAT_CODABAR)
  • EAN-13‏ (FORMAT_EAN_13)
  • EAN-8‏ (FORMAT_EAN_8)
  • ITF‏ (FORMAT_ITF)
  • UPC-A‏ (FORMAT_UPC_A)
  • UPC-E‏ (FORMAT_UPC_E)
  • קוד QR (FORMAT_QR_CODE)
  • PDF417‏ (FORMAT_PDF417)
  • Aztec (FORMAT_AZTEC)
  • Data Matrix‏ (FORMAT_DATA_MATRIX)

החל מהגרסה 17.1.0 של המודל המצורף ומהגרסה 18.2.0 של המודל הלא מצורף, אפשר גם להפעיל את enableAllPotentialBarcodes() כדי להציג את כל הקודים הברקודיים הפוטנציאליים, גם אם אי אפשר לפענח אותם. אפשר להשתמש בנתונים האלה כדי לאפשר זיהוי נוסף, למשל על ידי הגדלת התצוגה במצלמה כדי לקבל תמונה ברורה יותר של כל ברקוד בתיבת הסימון שהוחזרה.

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build();

Further on, starting from bundled library 17.2.0 and unbundled library 18.3.0, a new feature called auto-zoom has been introduced to further enhance the barcode scanning experience. With this feature enabled, the app is notified when all barcodes within the view are too distant for decoding. As a result, the app can effortlessly adjust the camera's zoom ratio to the recommended setting provided by the library, ensuring optimal focus and readability. This feature will significantly enhance the accuracy and success rate of barcode scanning, making it easier for apps to capture information precisely.

To enable auto-zooming and customize the experience, you can utilize the setZoomSuggestionOptions() method along with your own ZoomCallback handler and desired maximum zoom ratio, as demonstrated in the code below.

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build();

zoomCallback is required to be provided to handle whenever the library suggests a zoom should be performed and this callback will always be called on the main thread.

The following code snippet shows an example of defining a simple callback.

Kotlin

fun setZoom(ZoomRatio: Float): Boolean {
    if (camera.isClosed()) return false
    camera.getCameraControl().setZoomRatio(zoomRatio)
    return true
}

Java

boolean setZoom(float zoomRatio) {
    if (camera.isClosed()) {
        return false;
    }
    camera.getCameraControl().setZoomRatio(zoomRatio);
    return true;
}

maxSupportedZoomRatio is related to the camera hardware, and different camera libraries have different ways to fetch it (see the javadoc of the setter method). In case this is not provided, an unbounded zoom ratio might be produced by the library which might not be supported. Refer to the setMaxSupportedZoomRatio() method introduction to see how to get the max supported zoom ratio with different Camera libraries.

When auto-zooming is enabled and no barcodes are successfully decoded within the view, BarcodeScanner triggers your zoomCallback with the requested zoomRatio. If the callback correctly adjusts the camera to this zoomRatio, it is highly probable that the most centered potential barcode will be decoded and returned.

A barcode may remain undecodable even after a successful zoom-in. In such cases, BarcodeScanner may either invoke the callback for another round of zoom-in until the maxSupportedZoomRatio is reached, or provide an empty list (or a list containing potential barcodes that were not decoded, if enableAllPotentialBarcodes() was called) to the OnSuccessListener (which will be defined in step 4. Process the image).

2. Prepare the input image

To recognize barcodes in an image, create an InputImage object from either a Bitmap, media.Image, ByteBuffer, byte array, or a file on the device. Then, pass the InputImage object to the BarcodeScanner's process method.

You can create an InputImage object from different sources, each is explained below.

Using a media.Image

To create an InputImage object from a media.Image object, such as when you capture an image from a device's camera, pass the media.Image object and the image's rotation to InputImage.fromMediaImage().

If you use the CameraX library, the OnImageCapturedListener and ImageAnalysis.Analyzer classes calculate the rotation value for you.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

אם אתם לא משתמשים בספריית מצלמה שמספקת את מידת הסיבוב של התמונה, תוכלו לחשב אותה לפי מידת הסיבוב של המכשיר והכיוון של חיישן המצלמה במכשיר:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

לאחר מכן מעבירים את האובייקט media.Image ואת הערך של דרגת הסיבוב אל InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

שימוש ב-URI של קובץ

כדי ליצור אובייקט InputImage מכתובת URI של קובץ, מעבירים את הקשר של האפליקציה ואת כתובת ה-URI של הקובץ ל-InputImage.fromFilePath(). האפשרות הזו שימושית כשמשתמשים בכוונה ACTION_GET_CONTENT כדי לבקש מהמשתמש לבחור תמונה מאפליקציית הגלריה שלו.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

שימוש ב-ByteBuffer או ב-ByteArray

כדי ליצור אובייקט InputImage מ-ByteBuffer או מ-ByteArray, קודם מחשבים את מידת הסיבוב של התמונה כפי שמתואר למעלה לגבי קלט media.Image. לאחר מכן, יוצרים את האובייקט InputImage עם המאגר או המערך, יחד עם הגובה, הרוחב, פורמט קידוד הצבע ומידת הסיבוב של התמונה:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

שימוש ב-Bitmap

כדי ליצור אובייקט InputImage מתוך אובייקט Bitmap, צריך להצהיר על כך באופן הבא:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

התמונה מיוצגת על ידי אובייקט Bitmap יחד עם מעלות הסיבוב.

3. אחזור מכונה של BarcodeScanner

Kotlin

val scanner = BarcodeScanning.getClient()
// Or, to specify the formats to recognize:
// val scanner = BarcodeScanning.getClient(options)

Java

BarcodeScanner scanner = BarcodeScanning.getClient();
// Or, to specify the formats to recognize:
// BarcodeScanner scanner = BarcodeScanning.getClient(options);

4. עיבוד התמונה

מעבירים את התמונה לשיטה process:

Kotlin

val result = scanner.process(image)
        .addOnSuccessListener { barcodes ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener {
            // Task failed with an exception
            // ...
        }

Java

Task<List<Barcode>> result = scanner.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<Barcode>>() {
            @Override
            public void onSuccess(List<Barcode> barcodes) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

5. אחזור מידע מברקודים

אם פעולת זיהוי הברקוד תצליח, רשימה של אובייקטים מסוג Barcode תועבר למאזין להצלחה. כל אובייקט Barcode מייצג ברקוד שזוהה בתמונה. לכל ברקוד אפשר לקבל את קואורדינטות המסגרת שלו בתמונה הקלט, וגם את הנתונים הגולמיים שקודדו בברקוד. בנוסף, אם סורק הברקוד הצליח לקבוע את סוג הנתונים המקודדים בברקוד, תוכלו לקבל אובייקט שמכיל נתונים מנותחים.

לדוגמה:

Kotlin

for (barcode in barcodes) {
    val bounds = barcode.boundingBox
    val corners = barcode.cornerPoints

    val rawValue = barcode.rawValue

    val valueType = barcode.valueType
    // See API reference for complete list of supported types
    when (valueType) {
        Barcode.TYPE_WIFI -> {
            val ssid = barcode.wifi!!.ssid
            val password = barcode.wifi!!.password
            val type = barcode.wifi!!.encryptionType
        }
        Barcode.TYPE_URL -> {
            val title = barcode.url!!.title
            val url = barcode.url!!.url
        }
    }
}

Java

for (Barcode barcode: barcodes) {
    Rect bounds = barcode.getBoundingBox();
    Point[] corners = barcode.getCornerPoints();

    String rawValue = barcode.getRawValue();

    int valueType = barcode.getValueType();
    // See API reference for complete list of supported types
    switch (valueType) {
        case Barcode.TYPE_WIFI:
            String ssid = barcode.getWifi().getSsid();
            String password = barcode.getWifi().getPassword();
            int type = barcode.getWifi().getEncryptionType();
            break;
        case Barcode.TYPE_URL:
            String title = barcode.getUrl().getTitle();
            String url = barcode.getUrl().getUrl();
            break;
    }
}

טיפים לשיפור הביצועים בזמן אמת

אם אתם רוצים לסרוק ברקודים באפליקציה בזמן אמת, תוכלו לפעול לפי ההנחיות הבאות כדי להשיג את שיעורי הפריימים הטובים ביותר:

  • לא לתעד קלט ברזולוציה המקורית של המצלמה. במכשירים מסוימים, צילום הקלט ברזולוציה המקורית יוצר תמונות גדולות מאוד (יותר מ-10 מגה-פיקסלים), וכתוצאה מכך זמן האחזור (latency) נמוך מאוד ללא שיפור ברמת הדיוק. במקום זאת, צריך לבקש מהמצלמה רק את הגודל שנחוץ לזיהוי ברקוד, שבדרך כלל הוא לא יותר מ-2 מגה-פיקסלים.

    אם מהירות הסריקה חשובה לכם, תוכלו להקטין עוד יותר את רזולוציית הצילום. עם זאת, חשוב לזכור את הדרישות המינימליות לגבי גודל הברקוד שמפורטות למעלה.

    אם אתם מנסים לזהות קודי מ barras מרצף של פריימים של וידאו בסטרימינג, יכול להיות שהמזהה יניב תוצאות שונות מפריים לפריים. כדי לוודא שהתוצאה שתקבלו טובה, כדאי להמתין עד שתקבלו סדרה של ערכים זהים ברצף.

    אין תמיכה בספרת סיכום הביקורת ב-ITF וב-CODE-39.

  • אם אתם משתמשים ב-API של Camera או ב-API של camera2, כדאי לצמצם את מספר הקריאות לגלאי. אם מסגרת וידאו חדשה זמינה בזמן שהגלאי פועל, צריך להסיר את המסגרת. דוגמה לכך מופיעה בכיתה VisionProcessorBase באפליקציה לדוגמה במדריך למתחילים.
  • אם אתם משתמשים ב-API‏ CameraX, חשוב לוודא ששיטת לחץ החזרה מוגדרת לערך ברירת המחדל שלה, ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. כך מובטח שרק תמונה אחת תישלח לניתוח בכל פעם. אם נוצרות תמונות נוספות כשהמנתח עסוק, הן יושמדו באופן אוטומטי ולא יעמדו בתור להעברה. אחרי שתמונה מסוימת נסגרת באמצעות קריאה ל-ImageProxy.close(), התמונה העדכנית הבאה תישלח.
  • אם משתמשים בפלט של הגלאי כדי להוסיף שכבת-על של גרפיקה לתמונה הקלט, קודם מקבלים את התוצאה מ-ML Kit, ואז מבצעים עיבוד תמונה של התמונה ומוסיפים את שכבת-העל בשלב אחד. המערכת מבצעת רינדור למשטח התצוגה רק פעם אחת לכל מסגרת קלט. לדוגמה, תוכלו לעיין בכיתות CameraSourcePreview ו- GraphicOverlay באפליקציית הדוגמה למדריך למתחילים.
  • אם אתם משתמשים ב-Camera2 API, כדאי לצלם תמונות בפורמט ImageFormat.YUV_420_888. אם משתמשים ב-Camera API הקודם, צריך לצלם תמונות בפורמט ImageFormat.NV21.