Вы можете использовать ML Kit для распознавания и декодирования штрихкодов.
Особенность | Разделенный | В комплекте |
---|---|---|
Выполнение | Модель динамически загружается через Google Play Services. | Модель статически привязывается к вашему приложению во время сборки. |
Размер приложения | Увеличение размера примерно на 200 КБ. | Размер увеличился примерно на 2,4 МБ. |
Время инициализации | Возможно, придется подождать, пока модель загрузится, перед первым использованием. | Модель доступна немедленно. |
Попробуйте это
- Поэкспериментируйте с образцом приложения , чтобы увидеть пример использования этого API.
- Полную реализацию этого API можно увидеть в демонстрационном приложении Material Design .
Прежде чем начать
В файле
build.gradle
уровня проекта обязательно включите репозиторий Maven от Google в разделыbuildscript
иallprojects
.Добавьте зависимости для библиотек ML Kit Android в файл Gradle уровня приложения вашего модуля, который обычно называется
app/build.gradle
. Выберите одну из следующих зависимостей в зависимости от ваших потребностей:Для объединения модели с вашим приложением:
dependencies { // ... // Use this dependency to bundle the model with your app implementation 'com.google.mlkit:barcode-scanning:17.3.0' }
Для использования модели в Google Play Services:
dependencies { // ... // Use this dependency to use the dynamically downloaded model in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-barcode-scanning:18.3.1' }
Если вы решите использовать модель в сервисах Google Play , вы можете настроить приложение на автоматическую загрузку модели на устройство после установки из Play Маркета. Для этого добавьте следующее объявление в файл
AndroidManifest.xml
вашего приложения:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="barcode" > <!-- To use multiple models: android:value="barcode,model2,model3" --> </application>
Вы также можете явно проверить доступность модели и запросить загрузку через API ModuleInstallClient сервисов Google Play.
Если вы не включите загрузку моделей во время установки или не запросите явную загрузку, модель будет загружена при первом запуске сканера. Запросы, сделанные до завершения загрузки, не дадут результатов.
Правила ввода изображений
Для того чтобы ML Kit мог точно считывать штрихкоды, входные изображения должны содержать штрихкоды, представленные достаточным количеством пиксельных данных.
Конкретные требования к пиксельным данным зависят как от типа штрихкода, так и от объёма закодированных в нём данных, поскольку многие штрихкоды поддерживают полезную нагрузку переменного размера. Как правило, наименьшая значимая единица штрихкода должна иметь ширину не менее 2 пикселей, а для двумерных кодов — высоту не менее 2 пикселей.
Например, штрихкоды EAN-13 состоят из штрихов и пробелов шириной 1, 2, 3 или 4 единицы, поэтому в идеале изображение штрихкода EAN-13 должно иметь штрихи и пробелы шириной не менее 2, 4, 6 и 8 пикселей. Поскольку общая ширина штрихкода EAN-13 составляет 95 единиц, ширина штрихкода должна быть не менее 190 пикселей.
Более плотные форматы, такие как PDF417, требуют большего размера в пикселях для надёжного чтения ML Kit. Например, код PDF417 может содержать до 34 «слов» шириной 17 единиц в одной строке, что в идеале должно составлять не менее 1156 пикселей.
Плохая фокусировка изображения может повлиять на точность сканирования. Если ваше приложение не даёт приемлемых результатов, попросите пользователя повторно сделать снимок.
Для типичных приложений рекомендуется предоставлять изображение с более высоким разрешением, например 1280x720 или 1920x1080, что позволяет сканировать штрихкоды с большего расстояния от камеры.
Однако в приложениях, где задержка критична, можно повысить производительность, снимая изображения с более низким разрешением, но при этом требуя, чтобы штрихкод составлял большую часть входного изображения. См. также раздел «Советы по повышению производительности в реальном времени» .
1. Настройте сканер штрих-кода
Если вы знаете, какие форматы штрихкодов вы ожидаете считывать, вы можете повысить скорость детектора штрихкодов, настроив его на обнаружение только этих форматов. Например, чтобы обнаружить только коды Aztec и QR-коды, создайте объект BarcodeScannerOptions
, как показано в следующем примере:
Котлин
val options = BarcodeScannerOptions.Builder() .setBarcodeFormats( Barcode.FORMAT_QR_CODE, Barcode.FORMAT_AZTEC) .build()
Ява
BarcodeScannerOptions options = new BarcodeScannerOptions.Builder() .setBarcodeFormats( Barcode.FORMAT_QR_CODE, Barcode.FORMAT_AZTEC) .build();
Поддерживаются следующие форматы:
- Код 128 (
FORMAT_CODE_128
) - Код 39 (
FORMAT_CODE_39
) - Код 93 (
FORMAT_CODE_93
) - Кодабар (
FORMAT_CODABAR
) - EAN-13 (
FORMAT_EAN_13
) - EAN-8 (
FORMAT_EAN_8
) - ITF (
FORMAT_ITF
) - UPC-A (
FORMAT_UPC_A
) - UPC-E (
FORMAT_UPC_E
) - QR-код (
FORMAT_QR_CODE
) - PDF417 (
FORMAT_PDF417
) - Ацтекский (
FORMAT_AZTEC
) - Матрица данных (
FORMAT_DATA_MATRIX
)
Начиная с версии bundled 17.1.0 и unbundled 18.2.0, вы также можете вызвать функцию enableAllPotentialBarcodes()
для возврата всех потенциальных штрихкодов, даже если их невозможно декодировать. Это можно использовать для упрощения дальнейшего обнаружения, например, увеличив масштаб изображения камеры, чтобы получить более чёткое изображение любого штрихкода в возвращаемой ограничивающей рамке.
Котлин
val options = BarcodeScannerOptions.Builder() .setBarcodeFormats(...) .enableAllPotentialBarcodes() // Optional .build()
Java
BarcodeScannerOptions options = new BarcodeScannerOptions.Builder() .setBarcodeFormats(...) .enableAllPotentialBarcodes() // Optional .build();
Further on, starting from bundled library 17.2.0 and unbundled library 18.3.0, a new feature called auto-zoom has been introduced to further enhance the barcode scanning experience. With this feature enabled, the app is notified when all barcodes within the view are too distant for decoding. As a result, the app can effortlessly adjust the camera's zoom ratio to the recommended setting provided by the library, ensuring optimal focus and readability. This feature will significantly enhance the accuracy and success rate of barcode scanning, making it easier for apps to capture information precisely.
To enable auto-zooming and customize the experience, you can utilize the
setZoomSuggestionOptions()
method along with your
own ZoomCallback
handler and desired maximum zoom
ratio, as demonstrated in the code below.
Kotlin
val options = BarcodeScannerOptions.Builder() .setBarcodeFormats(...) .setZoomSuggestionOptions( new ZoomSuggestionOptions.Builder(zoomCallback) .setMaxSupportedZoomRatio(maxSupportedZoomRatio) .build()) // Optional .build()
Java
BarcodeScannerOptions options = new BarcodeScannerOptions.Builder() .setBarcodeFormats(...) .setZoomSuggestionOptions( new ZoomSuggestionOptions.Builder(zoomCallback) .setMaxSupportedZoomRatio(maxSupportedZoomRatio) .build()) // Optional .build();
zoomCallback
is required to be provided to handle whenever the library
suggests a zoom should be performed and this callback will always be called on
the main thread.
The following code snippet shows an example of defining a simple callback.
Kotlin
fun setZoom(ZoomRatio: Float): Boolean { if (camera.isClosed()) return false camera.getCameraControl().setZoomRatio(zoomRatio) return true }
Java
boolean setZoom(float zoomRatio) { if (camera.isClosed()) { return false; } camera.getCameraControl().setZoomRatio(zoomRatio); return true; }
maxSupportedZoomRatio
is related to the camera hardware, and different camera
libraries have different ways to fetch it (see the javadoc of the setter
method). In case this is not provided, an
unbounded zoom ratio might be produced by the library which might not be
supported. Refer to the
setMaxSupportedZoomRatio()
method
introduction to see how to get the max supported zoom ratio with different
Camera libraries.
When auto-zooming is enabled and no barcodes are successfully decoded within
the view, BarcodeScanner
triggers your zoomCallback
with the requested
zoomRatio
. If the callback correctly adjusts the camera to this zoomRatio
,
it is highly probable that the most centered potential barcode will be decoded
and returned.
A barcode may remain undecodable even after a successful zoom-in. In such cases,
BarcodeScanner
may either invoke the callback for another round of zoom-in
until the maxSupportedZoomRatio
is reached, or provide an empty list (or a
list containing potential barcodes that were not decoded, if
enableAllPotentialBarcodes()
was called) to the OnSuccessListener
(which
will be defined in step 4. Process the image).
2. Prepare the input image
To recognize barcodes in an image, create anInputImage
object
from either a Bitmap
, media.Image
, ByteBuffer
, byte array, or a file on
the device. Then, pass the InputImage
object to the
BarcodeScanner
's process
method.
You can create an InputImage
object from different sources, each is explained below.
Using a media.Image
To create an InputImage
object from a media.Image
object, such as when you capture an image from a
device's camera, pass the media.Image
object and the image's
rotation to InputImage.fromMediaImage()
.
If you use the
CameraX library, the OnImageCapturedListener
and
ImageAnalysis.Analyzer
classes calculate the rotation value
for you.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Ява
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Если вы не используете библиотеку камеры, которая вычисляет угол поворота изображения, вы можете рассчитать его на основе угла поворота устройства и ориентации датчика камеры в устройстве:
Котлин
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Ява
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Затем передайте объект media.Image
и значение угла поворота в InputImage.fromMediaImage()
:
Котлин
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Использование URI файла
Чтобы создать объект InputImage
из URI файла, передайте контекст приложения и URI файла методу InputImage.fromFilePath()
. Это полезно при использовании намерения ACTION_GET_CONTENT
, чтобы предложить пользователю выбрать изображение из приложения-галереи.
Котлин
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Использование ByteBuffer
или ByteArray
Чтобы создать объект InputImage
из ByteBuffer
или ByteArray
, сначала вычислите угол поворота изображения, как описано ранее для ввода media.Image
. Затем создайте объект InputImage
с буфером или массивом, а также с указанием высоты, ширины, формата кодировки цвета и угла поворота изображения:
Котлин
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Ява
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Использование Bitmap
Чтобы создать объект InputImage
из объекта Bitmap
, сделайте следующее объявление:
Котлин
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Изображение представлено объектом Bitmap
вместе с градусами поворота.
3. Получите экземпляр BarcodeScanner
Котлин
val scanner = BarcodeScanning.getClient() // Or, to specify the formats to recognize: // val scanner = BarcodeScanning.getClient(options)
Ява
BarcodeScanner scanner = BarcodeScanning.getClient(); // Or, to specify the formats to recognize: // BarcodeScanner scanner = BarcodeScanning.getClient(options);
4. Обработайте изображение.
Передайте изображение в методprocess
: Котлин
val result = scanner.process(image) .addOnSuccessListener { barcodes -> // Task completed successfully // ... } .addOnFailureListener { // Task failed with an exception // ... }
Ява
Task<List<Barcode>> result = scanner.process(image) .addOnSuccessListener(new OnSuccessListener<List<Barcode>>() { @Override public void onSuccess(List<Barcode> barcodes) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
5. Получите информацию из штрихкодов
Если операция распознавания штрихкода прошла успешно, прослушивателю событий передаётся список объектовBarcode
. Каждый объект Barcode
представляет собой штрихкод, обнаруженный на изображении. Для каждого штрихкода можно получить его граничные координаты на входном изображении, а также необработанные данные, закодированные штрихкодом. Кроме того, если сканеру удалось определить тип данных, закодированных штрихкодом, можно получить объект, содержащий проанализированные данные.Например:
Котлин
for (barcode in barcodes) { val bounds = barcode.boundingBox val corners = barcode.cornerPoints val rawValue = barcode.rawValue val valueType = barcode.valueType // See API reference for complete list of supported types when (valueType) { Barcode.TYPE_WIFI -> { val ssid = barcode.wifi!!.ssid val password = barcode.wifi!!.password val type = barcode.wifi!!.encryptionType } Barcode.TYPE_URL -> { val title = barcode.url!!.title val url = barcode.url!!.url } } }
Ява
for (Barcode barcode: barcodes) { Rect bounds = barcode.getBoundingBox(); Point[] corners = barcode.getCornerPoints(); String rawValue = barcode.getRawValue(); int valueType = barcode.getValueType(); // See API reference for complete list of supported types switch (valueType) { case Barcode.TYPE_WIFI: String ssid = barcode.getWifi().getSsid(); String password = barcode.getWifi().getPassword(); int type = barcode.getWifi().getEncryptionType(); break; case Barcode.TYPE_URL: String title = barcode.getUrl().getTitle(); String url = barcode.getUrl().getUrl(); break; } }
Советы по улучшению производительности в реальном времени
Если вы хотите сканировать штрихкоды в режиме реального времени, следуйте этим рекомендациям для достижения наилучшей частоты кадров:
Не снимайте данные с нативным разрешением камеры. На некоторых устройствах запись данных с нативным разрешением создаёт очень большие (более 10 мегапикселей) изображения, что приводит к очень высокой задержке без повышения точности. Вместо этого запрашивайте у камеры только размер, необходимый для распознавания штрихкода, который обычно не превышает 2 мегапикселей.
Если скорость сканирования важна, можно ещё больше снизить разрешение изображения. Однако при этом следует учитывать минимальные требования к размеру штрихкода, указанные выше.
Если вы пытаетесь распознать штрихкоды из последовательности кадров потокового видео, распознаватель может выдавать разные результаты от кадра к кадру. Чтобы быть уверенным в корректности результата, дождитесь получения последовательной серии одинаковых значений.
Контрольная сумма не поддерживается для ITF и CODE-39.
- Если вы используете API
Camera
илиcamera2
, ограничивайте количество вызовов детектора. Если во время работы детектора появляется новый видеокадр, удалите его. См. пример классаVisionProcessorBase
в примере приложения для быстрого старта. - Если вы используете API
CameraX
, убедитесь, что стратегия обратного давления установлена на значение по умолчаниюImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. Это гарантирует, что для анализа будет отправлено только одно изображение за раз. Если во время работы анализатора будут получены дополнительные изображения, они будут автоматически удалены и не будут поставлены в очередь на отправку. После закрытия анализируемого изображения вызовом ImageProxy.close() будет отправлено следующее по времени изображение. - Если вы используете выходные данные детектора для наложения графики на входное изображение, сначала получите результат из ML Kit, а затем визуализируйте изображение и наложение за один шаг. В этом случае визуализация на поверхности дисплея выполняется только один раз для каждого входного кадра. Пример см. в классах
CameraSourcePreview
иGraphicOverlay
в примере приложения для быстрого старта. - Если вы используете API Camera2, снимайте изображения в формате
ImageFormat.YUV_420_888
. Если вы используете более старую версию API Camera, снимайте изображения в форматеImageFormat.NV21
.
Если не указано иное, контент на этой странице предоставляется по лицензии Creative Commons "С указанием авторства 4.0", а примеры кода – по лицензии Apache 2.0. Подробнее об этом написано в правилах сайта. Java – это зарегистрированный товарный знак корпорации Oracle и ее аффилированных лиц.
Последнее обновление: 2025-09-03 UTC.