Gesichter mit ML Kit für Android erkennen

Mit ML Kit können Sie Gesichter in Bildern und Videos erkennen.

FunktionNicht gebündeltGebündelt
ImplementierungDas Modell wird dynamisch über die Google Play-Dienste heruntergeladen.Das Modell wird zur Build-Zeit statisch mit Ihrer App verknüpft.
App-GrößeDie Größe nimmt um etwa 800 KB zu.Die Größe hat sich um etwa 6,9 MB erhöht.
InitialisierungszeitMöglicherweise müssen Sie warten, bis das Modell heruntergeladen wurde, bevor Sie es zum ersten Mal verwenden können.Modell ist sofort verfügbar

Jetzt ausprobieren

Hinweis

  1. In die Datei build.gradle auf Projektebene muss das Maven-Repository von Google in die Abschnitte buildscript und allprojects aufgenommen werden.

  2. Fügen Sie die Abhängigkeiten für die ML Kit Android-Bibliotheken der Gradle-Datei auf App-Ebene Ihres Moduls hinzu. Diese Datei ist in der Regel app/build.gradle. Wählen Sie je nach Bedarf eine der folgenden Abhängigkeiten aus:

    Für das Bündeln des Modells mit Ihrer App:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:face-detection:16.1.7'
    }
    

    Für die Verwendung des Modells in den Google Play-Diensten:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-face-detection:17.1.0'
    }
    
  3. Wenn Sie das Modell in Google Play-Diensten verwenden, können Sie Ihre App so konfigurieren, dass das Modell automatisch auf das Gerät heruntergeladen wird, nachdem Ihre App aus dem Play Store installiert wurde. Fügen Sie dazu der Datei AndroidManifest.xml Ihrer App die folgende Deklaration hinzu:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="face" >
          <!-- To use multiple models: android:value="face,model2,model3" -->
    </application>
    

    Sie können die Modellverfügbarkeit auch explizit prüfen und den Download über die ModuleInstallClient API der Google Play-Dienste anfordern.

    Wenn Sie keine Modell-Downloads zur Installationszeit aktivieren oder keinen expliziten Download anfordern, wird das Modell beim ersten Ausführen des Detektors heruntergeladen. Anfragen, die Sie vor Abschluss des Downloads stellen, liefern keine Ergebnisse.

Richtlinien für Eingabebilder

Für die Gesichtserkennung sollten Sie ein Bild mit Abmessungen von mindestens 480 × 360 Pixeln verwenden. Damit ML Kit Gesichter genau erkennen kann, müssen Eingabebilder Gesichter enthalten, die durch ausreichend Pixeldaten dargestellt werden. Im Allgemeinen sollte jedes Gesicht, das Sie in einem Bild erkennen möchten, mindestens 100 × 100 Pixel groß sein. Wenn Sie die Konturen von Gesichtern erkennen möchten, ist für ML Kit eine höhere Auflösung erforderlich: Jedes Gesicht sollte mindestens 200 × 200 Pixel groß sein.

Wenn Sie Gesichter in einer Echtzeitanwendung erkennen, sollten Sie auch die Gesamtabmessungen der Eingabebilder berücksichtigen. Kleinere Bilder können schneller verarbeitet werden. Um die Latenz zu verringern, sollten Sie Bilder mit niedrigeren Auflösungen aufnehmen. Beachten Sie jedoch die oben genannten Anforderungen an die Genauigkeit und sorgen Sie dafür, dass das Gesicht des Subjekts so viel wie möglich vom Bild einnimmt. Weitere Tipps zur Verbesserung der Echtzeitleistung

Eine schlechte Bildschärfe kann sich ebenfalls auf die Genauigkeit auswirken. Wenn Sie keine akzeptablen Ergebnisse erhalten, bitten Sie den Nutzer, das Bild noch einmal aufzunehmen.

Die Ausrichtung eines Gesichts relativ zur Kamera kann sich auch darauf auswirken, welche Gesichtsmerkmale von ML Kit erkannt werden. Weitere Informationen finden Sie unter Konzepte der Gesichtserkennung.

1. Gesichtserkennung konfigurieren

Bevor Sie die Gesichtserkennung auf ein Bild anwenden, können Sie die Standardeinstellungen des Gesichtserkennungsmodells mit einem FaceDetectorOptions-Objekt ändern. Sie können die folgenden Einstellungen ändern:

Einstellungen
setPerformanceMode PERFORMANCE_MODE_FAST (Standard) | PERFORMANCE_MODE_ACCURATE

Sie können festlegen, ob die Gesichtserkennung schnell oder genau erfolgen soll.

setLandmarkMode LANDMARK_MODE_NONE (Standard) | LANDMARK_MODE_ALL

Gibt an, ob versucht werden soll, Gesichtsmerkmale wie Augen, Ohren, Nase, Wangen, Mund usw. zu erkennen.

setContourMode CONTOUR_MODE_NONE (Standard) | CONTOUR_MODE_ALL

Gibt an, ob die Konturen von Gesichtsmerkmalen erkannt werden sollen. Konturen werden nur für das markanteste Gesicht in einem Bild erkannt.

setClassificationMode CLASSIFICATION_MODE_NONE (Standard) | CLASSIFICATION_MODE_ALL

Gibt an, ob Gesichter in Kategorien wie „lächeln“ und „Augen geöffnet“ eingeteilt werden sollen.

setMinFaceSize float (Standard: 0.1f)

Legt die kleinste gewünschte Gesichtsgröße fest, ausgedrückt als Verhältnis der Breite des Kopfes zur Breite des Bildes.

enableTracking false (Standard) | true

Ob Gesichtern eine ID zugewiesen werden soll, mit der Gesichter auf Bildern verfolgt werden können.

Wenn die Konturerkennung aktiviert ist, wird nur ein Gesicht erkannt. Die Gesichtserkennung liefert dann keine nützlichen Ergebnisse. Aus diesem Grund und um die Erkennungsgeschwindigkeit zu verbessern, sollten Sie nicht sowohl die Konturerkennung als auch die Gesichtserkennung aktivieren.

Beispiel:

Kotlin

// High-accuracy landmark detection and face classification
val highAccuracyOpts = FaceDetectorOptions.Builder()
        .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
        .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
        .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
        .build()

// Real-time contour detection
val realTimeOpts = FaceDetectorOptions.Builder()
        .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
        .build()

Java

// High-accuracy landmark detection and face classification
FaceDetectorOptions highAccuracyOpts =
        new FaceDetectorOptions.Builder()
                .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
                .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
                .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
                .build();

// Real-time contour detection
FaceDetectorOptions realTimeOpts =
        new FaceDetectorOptions.Builder()
                .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
                .build();

2. Eingabebild vorbereiten

Wenn Sie Gesichter in einem Bild erkennen möchten, erstellen Sie ein InputImage-Objekt aus einem Bitmap, media.Image, ByteBuffer, einem Byte-Array oder einer Datei auf dem Gerät. Übergeben Sie dann das InputImage-Objekt an die process-Methode von FaceDetector.

Für die Gesichtserkennung sollten Sie ein Bild mit Abmessungen von mindestens 480 × 360 Pixeln verwenden. Wenn Sie Gesichter in Echtzeit erkennen, kann das Erfassen von Frames mit dieser Mindestauflösung die Latenz verringern.

Sie können ein InputImage-Objekt aus verschiedenen Quellen erstellen. Die einzelnen Quellen werden unten beschrieben.

Mit einem media.Image

Wenn Sie ein InputImage-Objekt aus einem media.Image-Objekt erstellen möchten, z. B. wenn Sie ein Bild mit der Kamera eines Geräts aufnehmen, übergeben Sie das media.Image-Objekt und die Drehung des Bildes an InputImage.fromMediaImage().

Wenn Sie die CameraX-Bibliothek verwenden, berechnen die Klassen OnImageCapturedListener und ImageAnalysis.Analyzer den Rotationswert für Sie.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Wenn Sie keine Kamerabibliothek verwenden, die den Drehwinkel des Bildes angibt, können Sie ihn aus dem Drehwinkel des Geräts und der Ausrichtung des Kamerasensors im Gerät berechnen:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Übergeben Sie dann das media.Image-Objekt und den Wert für den Drehwinkel an InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Datei-URI verwenden

Wenn Sie ein InputImage-Objekt aus einem Datei-URI erstellen möchten, übergeben Sie den App-Kontext und den Datei-URI an InputImage.fromFilePath(). Das ist nützlich, wenn Sie mit einem ACTION_GET_CONTENT-Intent den Nutzer auffordern, ein Bild aus seiner Galerie-App auszuwählen.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

ByteBuffer oder ByteArray verwenden

Wenn Sie ein InputImage-Objekt aus einem ByteBuffer oder einem ByteArray erstellen möchten, berechnen Sie zuerst den Bildrotationsgrad wie zuvor für die media.Image-Eingabe beschrieben. Erstellen Sie dann das InputImage-Objekt mit dem Puffer oder Array sowie der Höhe, Breite, dem Farbcodierungsformat und dem Rotationsgrad des Bildes:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Mit einem Bitmap

So erstellen Sie ein InputImage-Objekt aus einem Bitmap-Objekt:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Das Bild wird durch ein Bitmap-Objekt zusammen mit den Rotationsgraden dargestellt.

3. FaceDetector-Instanz abrufen

Kotlin

val detector = FaceDetection.getClient(options)
// Or, to use the default option:
// val detector = FaceDetection.getClient();

Java

FaceDetector detector = FaceDetection.getClient(options);
// Or use the default options:
// FaceDetector detector = FaceDetection.getClient();

4. Bild verarbeiten

Übergeben Sie das Bild an die Methode process:

Kotlin

val result = detector.process(image)
        .addOnSuccessListener { faces ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<List<Face>> result =
        detector.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<List<Face>>() {
                            @Override
                            public void onSuccess(List<Face> faces) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });
in der Beispiel-App für die Kurzanleitung.

5. Informationen zu erkannten Gesichtern abrufen

Wenn die Gesichtserkennung erfolgreich ist, wird eine Liste von Face-Objekten an den Erfolgs-Listener übergeben. Jedes Face-Objekt stellt ein im Bild erkanntes Gesicht dar. Für jedes Gesicht können Sie die Koordinaten des Begrenzungsrahmens im Eingabebild sowie alle anderen Informationen abrufen, die Sie für die Gesichtserkennung konfiguriert haben. Beispiel:

Kotlin

for (face in faces) {
    val bounds = face.boundingBox
    val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees
    val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    val leftEar = face.getLandmark(FaceLandmark.LEFT_EAR)
    leftEar?.let {
        val leftEarPos = leftEar.position
    }

    // If contour detection was enabled:
    val leftEyeContour = face.getContour(FaceContour.LEFT_EYE)?.points
    val upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM)?.points

    // If classification was enabled:
    if (face.smilingProbability != null) {
        val smileProb = face.smilingProbability
    }
    if (face.rightEyeOpenProbability != null) {
        val rightEyeOpenProb = face.rightEyeOpenProbability
    }

    // If face tracking was enabled:
    if (face.trackingId != null) {
        val id = face.trackingId
    }
}

Java

for (Face face : faces) {
    Rect bounds = face.getBoundingBox();
    float rotY = face.getHeadEulerAngleY();  // Head is rotated to the right rotY degrees
    float rotZ = face.getHeadEulerAngleZ();  // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    FaceLandmark leftEar = face.getLandmark(FaceLandmark.LEFT_EAR);
    if (leftEar != null) {
        PointF leftEarPos = leftEar.getPosition();
    }

    // If contour detection was enabled:
    List<PointF> leftEyeContour =
            face.getContour(FaceContour.LEFT_EYE).getPoints();
    List<PointF> upperLipBottomContour =
            face.getContour(FaceContour.UPPER_LIP_BOTTOM).getPoints();

    // If classification was enabled:
    if (face.getSmilingProbability() != null) {
        float smileProb = face.getSmilingProbability();
    }
    if (face.getRightEyeOpenProbability() != null) {
        float rightEyeOpenProb = face.getRightEyeOpenProbability();
    }

    // If face tracking was enabled:
    if (face.getTrackingId() != null) {
        int id = face.getTrackingId();
    }
}

Beispiel für Gesichtskonturen

Wenn Sie die Erkennung von Gesichtskonturen aktiviert haben, erhalten Sie eine Liste mit Punkten für jedes erkannte Gesichtsmerkmal. Diese Punkte stellen die Form des Features dar. Weitere Informationen dazu, wie Konturen dargestellt werden, finden Sie unter Konzepte für die Gesichtserkennung.

Das folgende Bild veranschaulicht, wie diese Punkte einem Gesicht zugeordnet werden. Klicken Sie auf das Bild, um es zu vergrößern:

Beispiel für ein erfasstes Gesichtskontur-Mesh

Gesichtserkennung in Echtzeit

Wenn Sie die Gesichtserkennung in einer Echtzeitanwendung verwenden möchten, sollten Sie die folgenden Richtlinien beachten, um die besten Framerates zu erzielen:

  • Konfigurieren Sie die Gesichtserkennung so, dass entweder die Erkennung von Gesichtskonturen oder die Klassifizierung und Erkennung von Orientierungspunkten verwendet wird, aber nicht beides:

     Konturerkennung
     Erkennung von Sehenswürdigkeiten
     Klassifizierung
     Erkennung von Sehenswürdigkeiten und Klassifizierung
     Konturerkennung und Erkennung von Sehenswürdigkeiten
     Konturerkennung und Klassifizierung
     Konturerkennung, Erkennung von Sehenswürdigkeiten und Klassifizierung

  • Aktivieren Sie den Modus FAST (standardmäßig aktiviert).

  • Nehmen Sie Bilder mit einer niedrigeren Auflösung auf. Beachten Sie jedoch auch die Anforderungen an die Bildabmessungen dieser API.

  • Wenn Sie die API Camera oder camera2 verwenden, drosseln Sie die Aufrufe des Detektors. Wenn ein neuer Videoframes verfügbar wird, während der Detektor ausgeführt wird, verwerfen Sie den Frame. Ein Beispiel finden Sie in der Klasse VisionProcessorBase in der Beispiel-App für die Kurzanleitung.
  • Wenn Sie die CameraX API verwenden, muss die Backpressure-Strategie auf den Standardwert ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST festgelegt sein. So wird sichergestellt, dass jeweils nur ein Bild zur Analyse bereitgestellt wird. Wenn mehr Bilder erstellt werden, während der Analyzer beschäftigt ist, werden sie automatisch verworfen und nicht für die Übermittlung in die Warteschlange gestellt. Sobald das analysierte Bild durch Aufrufen von ImageProxy.close() geschlossen wird, wird das nächste aktuelle Bild bereitgestellt.
  • Wenn Sie die Ausgabe des Detektors verwenden, um Grafiken auf dem Eingabebild zu überlagern, rufen Sie zuerst das Ergebnis von ML Kit ab und rendern Sie dann das Bild und die Überlagerung in einem einzigen Schritt. Das Bild wird für jeden Eingabe-Frame nur einmal auf der Displayoberfläche gerendert. Ein Beispiel finden Sie in der Beispiel-App für die Kurzanleitung in den Klassen CameraSourcePreview und GraphicOverlay.
  • Wenn Sie die Camera2 API verwenden, nehmen Sie Bilder im ImageFormat.YUV_420_888-Format auf. Wenn Sie die ältere Camera API verwenden, nehmen Sie Bilder im ImageFormat.NV21-Format auf.