Rilevamento dei volti con ML Kit su Android

Puoi utilizzare ML Kit per rilevare i volti in immagini e video.

FunzionalitàDisaggregatoIn bundle
ImplementazioneIl modello viene scaricato dinamicamente tramite Google Play Services.Il modello è collegato staticamente alla tua app in fase di compilazione.
Dimensioni appAumento delle dimensioni di circa 800 KB.Aumento delle dimensioni di circa 6,9 MB.
Tempo di inizializzazionePotresti dover attendere il download del modello prima del primo utilizzo.Il modello è disponibile immediatamente

Prova

  • Prova l'app di esempio per vedere un esempio di utilizzo di questa API.
  • Prova il codice in prima persona con il codelab.

Prima di iniziare

  1. Nel file build.gradle a livello di progetto, assicurati di includere il repository Maven di Google nelle sezioni buildscript e allprojects.

  2. Aggiungi le dipendenze per le librerie Android ML Kit al file Gradle a livello di app del modulo, che di solito è app/build.gradle. Scegli una delle seguenti dipendenze in base alle tue esigenze:

    Per raggruppare il modello con la tua app:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:face-detection:16.1.7'
    }
    

    Per l'utilizzo del modello in Google Play Services:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-face-detection:17.1.0'
    }
    
  3. Se scegli di utilizzare il modello in Google Play Services, puoi configurare la tua app in modo che scarichi automaticamente il modello sul dispositivo dopo l'installazione dal Play Store. Per farlo, aggiungi la seguente dichiarazione al file AndroidManifest.xml dell'app:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="face" >
          <!-- To use multiple models: android:value="face,model2,model3" -->
    </application>
    

    Puoi anche controllare esplicitamente la disponibilità del modello e richiedere il download tramite l'API ModuleInstallClient di Google Play Services.

    Se non attivi i download del modello in fase di installazione o non richiedi il download esplicito, il modello viene scaricato la prima volta che esegui il rilevatore. Le richieste effettuate prima del completamento del download non producono risultati.

Linee guida per le immagini di input

Per il riconoscimento facciale, devi utilizzare un'immagine con dimensioni di almeno 480 x 360 pixel. Affinché ML Kit rilevi con precisione i volti, le immagini di input devono contenere volti rappresentati da dati dei pixel sufficienti. In generale, ogni volto che vuoi rilevare in un'immagine deve essere di almeno 100 x 100 pixel. Se vuoi rilevare i contorni dei volti, ML Kit richiede un input a risoluzione più elevata: ogni volto deve essere di almeno 200 x 200 pixel.

Se rilevi volti in un'applicazione in tempo reale, potresti anche prendere in considerazione le dimensioni complessive delle immagini di input. Le immagini più piccole possono essere elaborate più velocemente, quindi per ridurre la latenza, acquisisci immagini a risoluzioni inferiori, ma tieni presenti i requisiti di precisione sopra indicati e assicurati che il volto del soggetto occupi la maggior parte dell'immagine possibile. Consulta anche i suggerimenti per migliorare il rendimento in tempo reale.

Anche una messa a fuoco scadente dell'immagine può influire sull'accuratezza. Se non ottieni risultati accettabili, chiedi all'utente di acquisire nuovamente l'immagine.

Anche l'orientamento di un volto rispetto alla videocamera può influire sulle caratteristiche facciali rilevate da ML Kit. Consulta la sezione Concetti di rilevamento del volto.

1. Configurare il rilevatore di volti

Prima di applicare il rilevamento dei volti a un'immagine, se vuoi modificare le impostazioni predefinite del rilevatore di volti, specifica queste impostazioni con un oggetto FaceDetectorOptions. Puoi modificare le seguenti impostazioni:

Impostazioni
setPerformanceMode PERFORMANCE_MODE_FAST (predefinito) | PERFORMANCE_MODE_ACCURATE

Privilegia la velocità o l'accuratezza durante il rilevamento dei volti.

setLandmarkMode LANDMARK_MODE_NONE (predefinito) | LANDMARK_MODE_ALL

Se tentare di identificare i "punti di riferimento" del viso: occhi, orecchie, naso, guance, bocca e così via.

setContourMode CONTOUR_MODE_NONE (predefinito) | CONTOUR_MODE_ALL

Indica se rilevare i contorni delle caratteristiche del viso. I contorni vengono rilevati solo per il volto più prominente di un'immagine.

setClassificationMode CLASSIFICATION_MODE_NONE (predefinito) | CLASSIFICATION_MODE_ALL

Se classificare o meno i volti in categorie come "sorridente" e "occhi aperti".

setMinFaceSize float (valore predefinito: 0.1f)

Imposta la dimensione del volto più piccola desiderata, espressa come rapporto tra la larghezza della testa e la larghezza dell'immagine.

enableTracking false (predefinito) | true

Se assegnare o meno un ID ai volti, che può essere utilizzato per monitorare i volti nelle immagini.

Tieni presente che quando il rilevamento dei contorni è attivato, viene rilevato un solo volto, quindi il monitoraggio del volto non produce risultati utili. Per questo motivo e per migliorare la velocità di rilevamento, non attivare sia il rilevamento dei contorni che il monitoraggio del volto.

Ad esempio:

Kotlin

// High-accuracy landmark detection and face classification
val highAccuracyOpts = FaceDetectorOptions.Builder()
        .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
        .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
        .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
        .build()

// Real-time contour detection
val realTimeOpts = FaceDetectorOptions.Builder()
        .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
        .build()

Java

// High-accuracy landmark detection and face classification
FaceDetectorOptions highAccuracyOpts =
        new FaceDetectorOptions.Builder()
                .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
                .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
                .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
                .build();

// Real-time contour detection
FaceDetectorOptions realTimeOpts =
        new FaceDetectorOptions.Builder()
                .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
                .build();

2. Prepara l'immagine di input

Per rilevare i volti in un'immagine, crea un oggetto InputImage da un Bitmap, media.Image, ByteBuffer, array di byte o file sul dispositivo. Quindi, passa l'oggetto InputImage al metodo process di FaceDetector.

Per il rilevamento del volto, devi utilizzare un'immagine con dimensioni di almeno 480x360 pixel. Se rilevi volti in tempo reale, l'acquisizione di frame a questa risoluzione minima può contribuire a ridurre la latenza.

Puoi creare un oggetto InputImage da diverse origini, ognuna delle quali è spiegata di seguito.

Utilizzo di un media.Image

Per creare un oggetto InputImage da un oggetto media.Image, ad esempio quando acquisisci un'immagine dalla fotocamera di un dispositivo, passa l'oggetto media.Image e la rotazione dell'immagine a InputImage.fromMediaImage().

Se utilizzi la libreria CameraX, le classi OnImageCapturedListener e ImageAnalysis.Analyzer calcolano il valore di rotazione per te.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Se non utilizzi una libreria di fotocamere che ti fornisce il grado di rotazione dell'immagine, puoi calcolarlo dal grado di rotazione del dispositivo e dall'orientamento del sensore della fotocamera nel dispositivo:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Poi, passa l'oggetto media.Image e il valore del grado di rotazione a InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Utilizzo di un URI file

Per creare un oggetto InputImage da un URI file, passa il contesto dell'app e l'URI file a InputImage.fromFilePath(). Questa funzionalità è utile quando utilizzi un intent ACTION_GET_CONTENT per chiedere all'utente di selezionare un'immagine dalla sua app galleria.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Utilizzo di ByteBuffer o ByteArray

Per creare un oggetto InputImage da un ByteBuffer o da un ByteArray, calcola prima il grado di rotazione dell'immagine come descritto in precedenza per l'input media.Image. Quindi, crea l'oggetto InputImage con il buffer o l'array, insieme all'altezza, alla larghezza, al formato di codifica del colore e al grado di rotazione dell'immagine:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Utilizzo di un Bitmap

Per creare un oggetto InputImage da un oggetto Bitmap, effettua la seguente dichiarazione:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

L'immagine è rappresentata da un oggetto Bitmap insieme ai gradi di rotazione.

3. Recupera un'istanza di FaceDetector

Kotlin

val detector = FaceDetection.getClient(options)
// Or, to use the default option:
// val detector = FaceDetection.getClient();

Java

FaceDetector detector = FaceDetection.getClient(options);
// Or use the default options:
// FaceDetector detector = FaceDetection.getClient();

4. Elabora l'immagine

Passa l'immagine al metodo process:

Kotlin

val result = detector.process(image)
        .addOnSuccessListener { faces ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<List<Face>> result =
        detector.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<List<Face>>() {
                            @Override
                            public void onSuccess(List<Face> faces) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

5. Ottenere informazioni sui volti rilevati

Se l'operazione di rilevamento del volto va a buon fine, un elenco di oggetti Face viene passato al listener di successo. Ogni oggetto Face rappresenta un volto rilevato nell'immagine. Per ogni volto, puoi ottenere le coordinate del riquadro di selezione nell'immagine di input, nonché qualsiasi altra informazione che hai configurato per trovare il rilevatore di volti. Ad esempio:

Kotlin

for (face in faces) {
    val bounds = face.boundingBox
    val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees
    val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    val leftEar = face.getLandmark(FaceLandmark.LEFT_EAR)
    leftEar?.let {
        val leftEarPos = leftEar.position
    }

    // If contour detection was enabled:
    val leftEyeContour = face.getContour(FaceContour.LEFT_EYE)?.points
    val upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM)?.points

    // If classification was enabled:
    if (face.smilingProbability != null) {
        val smileProb = face.smilingProbability
    }
    if (face.rightEyeOpenProbability != null) {
        val rightEyeOpenProb = face.rightEyeOpenProbability
    }

    // If face tracking was enabled:
    if (face.trackingId != null) {
        val id = face.trackingId
    }
}

Java

for (Face face : faces) {
    Rect bounds = face.getBoundingBox();
    float rotY = face.getHeadEulerAngleY();  // Head is rotated to the right rotY degrees
    float rotZ = face.getHeadEulerAngleZ();  // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    FaceLandmark leftEar = face.getLandmark(FaceLandmark.LEFT_EAR);
    if (leftEar != null) {
        PointF leftEarPos = leftEar.getPosition();
    }

    // If contour detection was enabled:
    List<PointF> leftEyeContour =
            face.getContour(FaceContour.LEFT_EYE).getPoints();
    List<PointF> upperLipBottomContour =
            face.getContour(FaceContour.UPPER_LIP_BOTTOM).getPoints();

    // If classification was enabled:
    if (face.getSmilingProbability() != null) {
        float smileProb = face.getSmilingProbability();
    }
    if (face.getRightEyeOpenProbability() != null) {
        float rightEyeOpenProb = face.getRightEyeOpenProbability();
    }

    // If face tracking was enabled:
    if (face.getTrackingId() != null) {
        int id = face.getTrackingId();
    }
}

Esempio di contorni del viso

Quando è attivato il rilevamento del contorno del viso, viene visualizzato un elenco di punti per ogni caratteristica del viso rilevata. Questi punti rappresentano la forma della caratteristica. Per informazioni dettagliate su come vengono rappresentati i contorni, consulta Concetti di rilevamento del volto.

L'immagine seguente mostra come questi punti vengono mappati su un volto. Fai clic sull'immagine per ingrandirla:

esempio di mesh del contorno del volto rilevato

Rilevamento facciale in tempo reale

Se vuoi utilizzare il rilevamento del volto in un'applicazione in tempo reale, segui queste linee guida per ottenere i migliori frame rate:

  • Configura il rilevatore di volti in modo che utilizzi il rilevamento del contorno del volto o la classificazione e il rilevamento dei punti di riferimento, ma non entrambi:

    Rilevamento dei contorni
    Rilevamento dei punti di riferimento
    Classificazione
    Rilevamento e classificazione dei punti di riferimento
    Rilevamento dei contorni e dei punti di riferimento
    Rilevamento dei contorni e classificazione
    Rilevamento dei contorni, dei punti di riferimento e classificazione

  • Attiva la modalità FAST (attivata per impostazione predefinita).

  • Valuta la possibilità di acquisire immagini a una risoluzione inferiore. Tuttavia, tieni presente anche i requisiti relativi alle dimensioni delle immagini di questa API.

  • Se utilizzi l'API Camera o camera2, limita le chiamate al rilevatore. Se un nuovo frame video diventa disponibile durante l'esecuzione del rilevatore, rilascia il frame. Per un esempio, consulta la classe VisionProcessorBase nell'app di esempio della guida rapida.
  • Se utilizzi l'API CameraX, assicurati che la strategia di backpressure sia impostata sul valore predefinito ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. In questo modo, per l'analisi verrà inviata una sola immagine alla volta. Se vengono prodotte più immagini quando l'analizzatore è occupato, queste verranno eliminate automaticamente e non verranno messe in coda per la consegna. Una volta chiusa l'immagine in fase di analisi chiamando ImageProxy.close(), verrà inviata l'ultima immagine più recente.
  • Se utilizzi l'output del rilevatore per sovrapporre elementi grafici all'immagine di input, prima ottieni il risultato da ML Kit, poi esegui il rendering dell'immagine e la sovrapposizione in un unico passaggio. Il rendering viene eseguito sulla superficie di visualizzazione solo una volta per ogni frame di input. Per un esempio, consulta le classi CameraSourcePreview e GraphicOverlay nell'app di esempio di avvio rapido.
  • Se utilizzi l'API Camera2, acquisisci immagini in formato ImageFormat.YUV_420_888. Se utilizzi la versione precedente dell'API Camera, acquisisci immagini in formato ImageFormat.NV21.