在 Android 上使用 ML Kit 偵測臉孔

您可以使用 ML Kit 偵測圖片和影片中的臉部。

功能未綁定組合
導入作業模型會透過 Google Play 服務動態下載。模型會在建構時靜態連結至應用程式。
應用程式大小大小增加約 800 KB。大小增加約 6.9 MB。
初始化時間首次使用前可能需要等待模型下載完成。模型會立即提供

立即試用

事前準備

  1. 在專案層級的 build.gradle 檔案中,請務必在 buildscriptallprojects 區段中加入 Google 的 Maven 存放區。

  2. 將 ML Kit Android 程式庫的依附元件新增至模組的應用程式層級 Gradle 檔案,通常為 app/build.gradle。請依據需求選擇下列其中一個依附元件:

    如要將模型與應用程式組合:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:face-detection:16.1.7'
    }
    

    如要在 Google Play 服務中使用模型:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-face-detection:17.1.0'
    }
    
  3. 如果選擇在 Google Play 服務中使用模型,您可以設定應用程式,在從 Play 商店安裝後自動將模型下載至裝置。如要這麼做,請在應用程式的 AndroidManifest.xml 檔案中加入以下宣告:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="face" >
          <!-- To use multiple models: android:value="face,model2,model3" -->
    </application>
    

    您也可以透過 Google Play 服務 ModuleInstallClient API,明確檢查模型可用性並要求下載。

    如果您未啟用安裝時模型下載功能或要求明確下載,模型會在您首次執行偵測器時下載。在下載完成前提出的要求不會產生任何結果。

輸入圖片規範

如要進行臉部辨識,請使用尺寸至少為 480x360 像素的圖片。 如要讓 ML Kit 準確偵測臉部,輸入圖片必須包含臉部,且臉部有足夠的像素資料。一般來說,圖片中要偵測的每個臉部至少應為 100x100 像素。如要偵測臉部輪廓,ML Kit 需要較高解析度的輸入內容:每個臉部至少應為 200x200 像素。

如果您在即時應用程式中偵測到臉部,可能也需要考量輸入圖片的整體尺寸。較小的圖片處理速度較快,因此如要縮短延遲時間,請以較低的解析度拍攝圖片,但請注意上述準確度規定,並確保主體的臉部盡可能占滿圖片。另請參閱提升即時效能的訣竅

圖片對焦不佳也會影響準確度。如果結果不符合要求,請要求使用者重新拍攝圖片。

臉部相對於攝影機的方向也會影響 ML Kit 偵測到的臉部特徵。請參閱「臉部偵測概念」。

1. 設定臉部偵測器

將臉部偵測套用至圖片前,如要變更臉部偵測器的任何預設設定,請使用 FaceDetectorOptions 物件指定這些設定。你可以變更下列設定:

設定
setPerformanceMode PERFORMANCE_MODE_FAST (預設) | � PERFORMANCE_MODE_ACCURATE

偵測臉孔時,偏好速度或準確度。

setLandmarkMode LANDMARK_MODE_NONE (預設) | � LANDMARK_MODE_ALL

是否嘗試辨識臉部「地標」:眼睛、耳朵、鼻子、臉頰、嘴巴等。

setContourMode CONTOUR_MODE_NONE (預設) | � CONTOUR_MODE_ALL

是否要偵測臉部特徵的輪廓。系統只會偵測圖片中最顯眼的臉部輪廓。

setClassificationMode CLASSIFICATION_MODE_NONE (預設) | CLASSIFICATION_MODE_ALL

是否要將臉部分類,例如「微笑」和「睜開眼睛」。

setMinFaceSize float (預設值:0.1f)

設定所需最小臉部大小,以頭部寬度與圖片寬度的比例表示。

enableTracking false (預設) | true

是否要為臉部分配 ID,以便追蹤圖片中的臉部。

請注意,啟用輪廓偵測功能後,系統只會偵測到一張臉,因此臉部追蹤功能不會產生實用結果。因此,為提升偵測速度,請勿同時啟用輪廓偵測和臉部追蹤功能。

例如:

Kotlin

// High-accuracy landmark detection and face classification
val highAccuracyOpts = FaceDetectorOptions.Builder()
        .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
        .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
        .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
        .build()

// Real-time contour detection
val realTimeOpts = FaceDetectorOptions.Builder()
        .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
        .build()

Java

// High-accuracy landmark detection and face classification
FaceDetectorOptions highAccuracyOpts =
        new FaceDetectorOptions.Builder()
                .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
                .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
                .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
                .build();

// Real-time contour detection
FaceDetectorOptions realTimeOpts =
        new FaceDetectorOptions.Builder()
                .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
                .build();

2. 準備輸入圖片

如要在圖片中偵測臉部,請從 Bitmapmedia.ImageByteBuffer、位元組陣列或裝置上的檔案建立 InputImage 物件。然後,將 InputImage 物件傳遞至 FaceDetectorprocess 方法。

如要進行臉部偵測,請使用尺寸至少為 480x360 像素的圖片。如果您要即時偵測臉部,以這個最低解析度擷取影格有助於縮短延遲時間。

您可以從不同來源建立 InputImage 物件,詳情請參閱下文。

使用 media.Image

如要從 media.Image 物件建立 InputImage 物件 (例如從裝置的相機擷取圖片時),請將 media.Image 物件和圖片的旋轉角度傳遞至 InputImage.fromMediaImage()

如果您使用 CameraX 程式庫,OnImageCapturedListenerImageAnalysis.Analyzer 類別會為您計算旋轉值。

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

如果您使用的相機程式庫未提供圖片的旋轉角度,可以根據裝置的旋轉角度和裝置中相機感應器的方向計算:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

接著,將 media.Image 物件和旋轉角度值傳遞至 InputImage.fromMediaImage()

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

使用檔案 URI

如要從檔案 URI 建立 InputImage 物件,請將應用程式內容和檔案 URI 傳遞至 InputImage.fromFilePath()。當您使用 ACTION_GET_CONTENT 意圖提示使用者從相簿應用程式選取圖片時,這項功能就非常實用。

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

使用 ByteBufferByteArray

如要從 ByteBufferByteArray 建立 InputImage 物件,請先計算圖片旋轉角度,如先前所述的 media.Image 輸入內容。接著,使用緩衝區或陣列建立 InputImage 物件,並提供圖片的高度、寬度、色彩編碼格式和旋轉角度:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

使用 Bitmap

如要從 Bitmap 物件建立 InputImage 物件,請進行下列宣告:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

圖片會以 Bitmap 物件和旋轉角度表示。

3. 取得 FaceDetector 的執行個體

Kotlin

val detector = FaceDetection.getClient(options)
// Or, to use the default option:
// val detector = FaceDetection.getClient();

Java

FaceDetector detector = FaceDetection.getClient(options);
// Or use the default options:
// FaceDetector detector = FaceDetection.getClient();

4. 處理圖片

將圖片傳遞至 process 方法:

Kotlin

val result = detector.process(image)
        .addOnSuccessListener { faces ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<List<Face>> result =
        detector.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<List<Face>>() {
                            @Override
                            public void onSuccess(List<Face> faces) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

5. 取得偵測到的臉部資訊

如果臉部偵測作業成功,系統會將 Face 物件清單傳遞至成功事件監聽器。每個 Face 物件代表圖片中偵測到的臉部。您可以取得輸入圖片中每個臉部的邊界座標,以及您設定臉部偵測器要尋找的任何其他資訊。例如:

Kotlin

for (face in faces) {
    val bounds = face.boundingBox
    val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees
    val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    val leftEar = face.getLandmark(FaceLandmark.LEFT_EAR)
    leftEar?.let {
        val leftEarPos = leftEar.position
    }

    // If contour detection was enabled:
    val leftEyeContour = face.getContour(FaceContour.LEFT_EYE)?.points
    val upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM)?.points

    // If classification was enabled:
    if (face.smilingProbability != null) {
        val smileProb = face.smilingProbability
    }
    if (face.rightEyeOpenProbability != null) {
        val rightEyeOpenProb = face.rightEyeOpenProbability
    }

    // If face tracking was enabled:
    if (face.trackingId != null) {
        val id = face.trackingId
    }
}

Java

for (Face face : faces) {
    Rect bounds = face.getBoundingBox();
    float rotY = face.getHeadEulerAngleY();  // Head is rotated to the right rotY degrees
    float rotZ = face.getHeadEulerAngleZ();  // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    FaceLandmark leftEar = face.getLandmark(FaceLandmark.LEFT_EAR);
    if (leftEar != null) {
        PointF leftEarPos = leftEar.getPosition();
    }

    // If contour detection was enabled:
    List<PointF> leftEyeContour =
            face.getContour(FaceContour.LEFT_EYE).getPoints();
    List<PointF> upperLipBottomContour =
            face.getContour(FaceContour.UPPER_LIP_BOTTOM).getPoints();

    // If classification was enabled:
    if (face.getSmilingProbability() != null) {
        float smileProb = face.getSmilingProbability();
    }
    if (face.getRightEyeOpenProbability() != null) {
        float rightEyeOpenProb = face.getRightEyeOpenProbability();
    }

    // If face tracking was enabled:
    if (face.getTrackingId() != null) {
        int id = face.getTrackingId();
    }
}

臉部輪廓範例

啟用臉部輪廓偵測功能後,系統會列出偵測到的每個臉部特徵點。這些點代表特徵的形狀。如要進一步瞭解輪廓的表示方式,請參閱臉部偵測概念

下圖說明這些點如何對應至臉部,按一下圖片即可放大:

偵測到的臉部輪廓網格範例

即時臉部偵測

如要在即時應用程式中使用臉部偵測功能,請遵循下列準則,盡可能提高影格速率:

  • 設定臉部偵測器,使用臉部輪廓偵測或分類和地標偵測,但不能同時使用這兩種功能:

    輪廓偵測
    地標偵測
    分類
    地標偵測和分類
    輪廓偵測和地標偵測
    輪廓偵測和分類
    輪廓偵測、地標偵測和分類

  • 啟用 FAST 模式 (預設為啟用)。

  • 建議您以較低的解析度拍攝圖片。不過,也請注意此 API 的圖片尺寸規定。

  • 如果您使用 Cameracamera2 API,請節流對偵測器的呼叫。如果偵測器執行期間有新的影片影格可用,請捨棄該影格。如需範例,請參閱快速入門範例應用程式中的 VisionProcessorBase 類別。
  • 如果您使用 CameraX API,請務必將背壓策略設為預設值 ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST。這可確保系統一次只會傳送一張圖片進行分析。如果分析器忙碌時產生更多圖片,系統會自動捨棄這些圖片,不會排隊等待傳送。呼叫 ImageProxy.close() 關閉要分析的圖片後,系統就會傳送下一個最新圖片。
  • 如果使用偵測器的輸出內容,在輸入圖片上疊加圖像,請先從 ML Kit 取得結果,然後在單一步驟中算繪圖片並疊加圖像。每個輸入影格只會轉譯到顯示介面一次。如需範例,請參閱快速入門範例應用程式中的 CameraSourcePreview GraphicOverlay 類別。
  • 如果您使用 Camera2 API,請以 ImageFormat.YUV_420_888 格式擷取圖片。如果使用舊版 Camera API,請以 ImageFormat.NV21 格式擷取圖片。