Détecter des visages avec ML Kit sur Android

Vous pouvez utiliser ML Kit pour détecter des visages dans des images et des vidéos.

FonctionnalitéDégroupéGroupée
ImplémentationLe modèle est téléchargé de manière dynamique via les services Google Play.Le modèle est lié de manière statique à votre application au moment de la compilation.
Taille de l'applicationAugmentation de la taille d'environ 800 ko.Augmentation de la taille d'environ 6,9 Mo.
Délai d'initialisationVous devrez peut-être attendre que le modèle soit téléchargé avant de l'utiliser.Le modèle est disponible immédiatement

Essayer

Avant de commencer

  1. Dans le fichier build.gradle de niveau projet, veillez à inclure le dépôt Maven de Google à la fois dans les sections buildscript et allprojects.

  2. Ajoutez les dépendances des bibliothèques Android ML Kit au fichier Gradle au niveau de l'application de votre module, qui est généralement app/build.gradle. Choisissez l'une des dépendances suivantes en fonction de vos besoins:

    Pour regrouper le modèle avec votre application:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:face-detection:16.1.7'
    }
    

    Pour utiliser le modèle dans les services Google Play:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-face-detection:17.1.0'
    }
    
  3. Si vous choisissez d'utiliser le modèle dans les services Google Play, vous pouvez configurer votre application pour qu'elle télécharge automatiquement le modèle sur l'appareil une fois qu'elle est installée depuis le Play Store. Pour ce faire, ajoutez la déclaration suivante au fichier AndroidManifest.xml de votre application:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="face" >
          <!-- To use multiple models: android:value="face,model2,model3" -->
    </application>
    

    Vous pouvez également vérifier explicitement la disponibilité du modèle et demander le téléchargement via l'API ModuleInstallClient des services Google Play.

    Si vous n'activez pas le téléchargement de modèles au moment de l'installation ou si vous ne demandez pas de téléchargement explicite, le modèle est téléchargé la première fois que vous exécutez le détecteur. Les requêtes que vous effectuez avant la fin du téléchargement ne produisent aucun résultat.

Consignes concernant les images d'entrée

Pour la reconnaissance faciale, vous devez utiliser une image dont les dimensions sont d'au moins 480 x 360 pixels. Pour que ML Kit détecte précisément les visages, les images d'entrée doivent contenir des visages représentés par suffisamment de données de pixel. En général, chaque visage que vous souhaitez détecter dans une image doit faire au moins 100 x 100 pixels. Si vous souhaitez détecter les contours des visages, ML Kit nécessite une entrée de résolution supérieure: chaque visage doit mesurer au moins 200 x 200 pixels.

Si vous détectez des visages dans une application en temps réel, vous pouvez également tenir compte des dimensions globales des images d'entrée. Les images plus petites peuvent être traitées plus rapidement. Pour réduire la latence, capturez des images à des résolutions inférieures, mais gardez à l'esprit les exigences de précision ci-dessus et assurez-vous que le visage du sujet occupe autant que possible l'image. Consultez également les conseils pour améliorer les performances en temps réel.

Un mauvais cadrage peut également avoir un impact sur la précision. Si vous n'obtenez pas de résultats acceptables, demandez à l'utilisateur de reprendre la photo.

L'orientation d'un visage par rapport à la caméra peut également affecter les caractéristiques faciales détectées par ML Kit. Consultez la section Concepts de détection des visages.

1. Configurer le détecteur de visage

Avant d'appliquer la détection de visage à une image, si vous souhaitez modifier l'un des paramètres par défaut du détecteur de visage, spécifiez-le avec un objet FaceDetectorOptions. Vous pouvez modifier les paramètres suivants:

Paramètres
setPerformanceMode PERFORMANCE_MODE_FAST (par défaut) | PERFORMANCE_MODE_ACCURATE

Privilégiez la vitesse ou la précision lors de la détection des visages.

setLandmarkMode LANDMARK_MODE_NONE (par défaut) | LANDMARK_MODE_ALL

Indique si vous devez tenter d'identifier des "points de repère" faciaux : yeux, oreilles, nez, joues, bouche, etc.

setContourMode CONTOUR_MODE_NONE (par défaut) | CONTOUR_MODE_ALL

Indique si les contours des traits du visage doivent être détectés. Les contours ne sont détectés que pour le visage le plus visible d'une image.

setClassificationMode CLASSIFICATION_MODE_NONE (par défaut) | CLASSIFICATION_MODE_ALL

Indique si les visages doivent être classés ou non en catégories telles que "sourire" et "yeux ouverts".

setMinFaceSize float (par défaut: 0.1f)

Définit la plus petite taille de visage souhaitée, exprimée en tant que ratio entre la largeur de la tête et la largeur de l'image.

enableTracking false (par défaut) | true

Indique si vous devez attribuer un ID aux visages, qui peut être utilisé pour suivre les visages dans les images.

Notez que lorsque la détection des contours est activée, un seul visage est détecté. Le suivi du visage ne produit donc pas de résultats utiles. Pour cette raison et pour améliorer la vitesse de détection, n'activez pas à la fois la détection des contours et le suivi du visage.

Exemple :

Kotlin

// High-accuracy landmark detection and face classification
val highAccuracyOpts = FaceDetectorOptions.Builder()
        .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
        .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
        .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
        .build()

// Real-time contour detection
val realTimeOpts = FaceDetectorOptions.Builder()
        .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
        .build()

Java

// High-accuracy landmark detection and face classification
FaceDetectorOptions highAccuracyOpts =
        new FaceDetectorOptions.Builder()
                .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
                .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
                .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
                .build();

// Real-time contour detection
FaceDetectorOptions realTimeOpts =
        new FaceDetectorOptions.Builder()
                .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
                .build();

2. Préparer l'image d'entrée

Pour détecter des visages dans une image, créez un objet InputImage à partir d'un Bitmap, media.Image, ByteBuffer, d'un tableau d'octets ou d'un fichier sur l'appareil. Transmettez ensuite l'objet InputImage à la méthode process de FaceDetector.

Pour la détection de visage, vous devez utiliser une image dont les dimensions sont d'au moins 480 x 360 pixels. Si vous détectez des visages en temps réel, la capture de frames à cette résolution minimale peut contribuer à réduire la latence.

Vous pouvez créer un objet InputImage à partir de différentes sources, chacune étant expliquée ci-dessous.

Utiliser un media.Image

Pour créer un objet InputImage à partir d'un objet media.Image, par exemple lorsque vous capturez une image à partir de l'appareil photo d'un appareil, transmettez l'objet media.Image et la rotation de l'image à InputImage.fromMediaImage().

Si vous utilisez la bibliothèque CameraX, les classes OnImageCapturedListener et ImageAnalysis.Analyzer calculent la valeur de rotation à votre place.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Si vous n'utilisez pas de bibliothèque d'appareil photo qui vous indique le degré de rotation de l'image, vous pouvez le calculer à partir du degré de rotation de l'appareil et de l'orientation du capteur de l'appareil photo dans l'appareil:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Transmettez ensuite l'objet media.Image et la valeur de degré de rotation à InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Utiliser un URI de fichier

Pour créer un objet InputImage à partir d'un URI de fichier, transmettez le contexte de l'application et l'URI de fichier à InputImage.fromFilePath(). Cela est utile lorsque vous utilisez un intent ACTION_GET_CONTENT pour inviter l'utilisateur à sélectionner une image dans son application Galerie.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Utiliser un ByteBuffer ou un ByteArray

Pour créer un objet InputImage à partir d'un ByteBuffer ou d'un ByteArray, commencez par calculer le degré de rotation de l'image comme décrit précédemment pour l'entrée media.Image. Créez ensuite l'objet InputImage avec le tampon ou le tableau, ainsi que la hauteur, la largeur, le format d'encodage des couleurs et le degré de rotation de l'image:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Utiliser un Bitmap

Pour créer un objet InputImage à partir d'un objet Bitmap, effectuez la déclaration suivante:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

L'image est représentée par un objet Bitmap avec les degrés de rotation.

3. Obtenir une instance de FaceDetector

Kotlin

val detector = FaceDetection.getClient(options)
// Or, to use the default option:
// val detector = FaceDetection.getClient();

Java

FaceDetector detector = FaceDetection.getClient(options);
// Or use the default options:
// FaceDetector detector = FaceDetection.getClient();

4. Traiter l'image

Transmettez l'image à la méthode process:

Kotlin

val result = detector.process(image)
        .addOnSuccessListener { faces ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<List<Face>> result =
        detector.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<List<Face>>() {
                            @Override
                            public void onSuccess(List<Face> faces) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

5. Obtenir des informations sur les visages détectés

Si l'opération de détection de visages aboutit, une liste d'objets Face est transmise à l'écouteur de succès. Chaque objet Face représente un visage détecté dans l'image. Pour chaque visage, vous pouvez obtenir ses coordonnées de délimitation dans l'image d'entrée, ainsi que toute autre information que vous avez configurée pour que le détecteur de visage la trouve. Exemple :

Kotlin

for (face in faces) {
    val bounds = face.boundingBox
    val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees
    val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    val leftEar = face.getLandmark(FaceLandmark.LEFT_EAR)
    leftEar?.let {
        val leftEarPos = leftEar.position
    }

    // If contour detection was enabled:
    val leftEyeContour = face.getContour(FaceContour.LEFT_EYE)?.points
    val upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM)?.points

    // If classification was enabled:
    if (face.smilingProbability != null) {
        val smileProb = face.smilingProbability
    }
    if (face.rightEyeOpenProbability != null) {
        val rightEyeOpenProb = face.rightEyeOpenProbability
    }

    // If face tracking was enabled:
    if (face.trackingId != null) {
        val id = face.trackingId
    }
}

Java

for (Face face : faces) {
    Rect bounds = face.getBoundingBox();
    float rotY = face.getHeadEulerAngleY();  // Head is rotated to the right rotY degrees
    float rotZ = face.getHeadEulerAngleZ();  // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    FaceLandmark leftEar = face.getLandmark(FaceLandmark.LEFT_EAR);
    if (leftEar != null) {
        PointF leftEarPos = leftEar.getPosition();
    }

    // If contour detection was enabled:
    List<PointF> leftEyeContour =
            face.getContour(FaceContour.LEFT_EYE).getPoints();
    List<PointF> upperLipBottomContour =
            face.getContour(FaceContour.UPPER_LIP_BOTTOM).getPoints();

    // If classification was enabled:
    if (face.getSmilingProbability() != null) {
        float smileProb = face.getSmilingProbability();
    }
    if (face.getRightEyeOpenProbability() != null) {
        float rightEyeOpenProb = face.getRightEyeOpenProbability();
    }

    // If face tracking was enabled:
    if (face.getTrackingId() != null) {
        int id = face.getTrackingId();
    }
}

Exemple de contours du visage

Lorsque la détection des contours du visage est activée, vous obtenez une liste de points pour chaque caractéristique du visage détectée. Ces points représentent la forme de l'élément géographique. Pour en savoir plus sur la représentation des contours, consultez la section Concepts de détection des visages.

L'image suivante montre comment ces points sont mappés sur un visage. Cliquez sur l'image pour l'agrandir:

exemple de maillage du contour du visage détecté

Détection de visages en temps réel

Si vous souhaitez utiliser la détection de visage dans une application en temps réel, suivez ces consignes pour obtenir les meilleurs fréquences d'images:

  • Configurez le détecteur de visage pour qu'il utilise la détection des contours du visage ou la classification et la détection des points de repère, mais pas les deux:

    Détection de contours
    Détection de points de repère
    Classification
    Détection et classification de points de repère
    Détection et détection de points de repère
    Détection et classification de contours
    Détection, détection de points de repère et classification de contours

  • Activez le mode FAST (activé par défaut).

  • Envisagez de prendre des images en basse résolution. Toutefois, gardez à l'esprit les exigences concernant les dimensions des images de cette API.

  • Si vous utilisez l'API Camera ou camera2, limitez les appels au détecteur. Si un nouveau frame vidéo devient disponible pendant l'exécution du détecteur, supprimez-le. Pour obtenir un exemple, consultez la classe VisionProcessorBase dans l'application exemple de démarrage rapide.
  • Si vous utilisez l'API CameraX, assurez-vous que la stratégie de contre-pression est définie sur sa valeur par défaut ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Cela garantit qu'une seule image sera envoyée pour analyse à la fois. Si d'autres images sont produites lorsque l'analyseur est occupé, elles seront supprimées automatiquement et ne seront pas mises en file d'attente pour la diffusion. Une fois l'image analysée fermée en appelant ImageProxy.close(), la dernière image est envoyée.
  • Si vous utilisez la sortie du détecteur pour superposer des éléments graphiques à l'image d'entrée, obtenez d'abord le résultat de ML Kit, puis affichez l'image et la superposition en une seule étape. Le rendu n'est effectué sur la surface d'affichage qu'une seule fois pour chaque frame d'entrée. Pour en savoir plus, consultez les classes CameraSourcePreview et GraphicOverlay dans l'application exemple de démarrage rapide.
  • Si vous utilisez l'API Camera2, capturez des images au format ImageFormat.YUV_420_888. Si vous utilisez l'ancienne API Camera, capturez des images au format ImageFormat.NV21.