אפשר להשתמש ב-ML Kit כדי לזהות פנים בתמונות ובסרטונים.
תכונה | לא מקובצים | בחבילה |
---|---|---|
הטמעה | המודל מוריד באופן דינמי דרך Google Play Services. | המודל מקושר באופן סטטי לאפליקציה בזמן ה-build. |
גודל האפליקציה | הגודל יגדל בכ-800KB. | הגודל יגדל בכ-6.9MB. |
זמן האתחול | יכול להיות שתצטרכו להמתין להורדת המודל לפני השימוש הראשון. | הדגם זמין באופן מיידי |
רוצה לנסות?
- כדאי לנסות את האפליקציה לדוגמה כדי לראות דוגמה לשימוש ב-API הזה.
- אתם יכולים לנסות את הקוד בעצמכם באמצעות codelab.
לפני שמתחילים
בקובץ
build.gradle
ברמת הפרויקט, חשוב לכלול את מאגר Maven של Google גם בקטעbuildscript
וגם בקטעallprojects
.מוסיפים את יחסי התלות של ספריות ML Kit ל-Android לקובץ ה-Gradle ברמת האפליקציה של המודול, שבדרך כלל נקרא
app/build.gradle
. בוחרים אחת מהתלות הבאות בהתאם לצרכים שלכם:כדי לצרף את המודל לאפליקציה:
dependencies { // ... // Use this dependency to bundle the model with your app implementation 'com.google.mlkit:face-detection:16.1.7' }
כדי להשתמש במודל ב-Google Play Services:
dependencies { // ... // Use this dependency to use the dynamically downloaded model in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-face-detection:17.1.0' }
אם בוחרים להשתמש במודל ב-Google Play Services, אפשר להגדיר שהאפליקציה תוריד את המודל למכשיר באופן אוטומטי אחרי ההתקנה שלה מחנות Play. כדי לעשות זאת, מוסיפים את ההצהרה הבאה לקובץ
AndroidManifest.xml
של האפליקציה:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="face" > <!-- To use multiple models: android:value="face,model2,model3" --> </application>
אפשר גם לבדוק באופן מפורש את הזמינות של המודל ולבקש הורדה דרך ModuleInstallClient API של Google Play Services.
אם לא מפעילים הורדות של מודלים בזמן ההתקנה או מבקשים הורדה מפורשת, המודל יורד בפעם הראשונה שמפעילים את הגלאי. בקשות שתשלחו לפני שההורדה תושלם לא יחזירו תוצאות.
הנחיות לתמונות קלט
לזיהוי פנים, צריך להשתמש בתמונה בגודל 480x360 פיקסלים לפחות. כדי ש-ML Kit יזהה פנים בצורה מדויקת, תמונות הקלט חייבות להכיל פנים שמיוצגים על ידי מספיק נתוני פיקסלים. באופן כללי, כל פנים שרוצים לזהות בתמונה צריכים להיות בגודל של 100x100 פיקסלים לפחות. אם רוצים לזהות את קווי המתאר של הפנים, צריך להזין ל-ML Kit קלט ברזולוציה גבוהה יותר: כל פנים צריך להיות בגודל של 200x200 פיקסלים לפחות.
אם אתם מזהים פנים באפליקציה בזמן אמת, כדאי גם להביא בחשבון את המימדים הכוללים של תמונות הקלט. קל יותר לעבד תמונות קטנות יותר, ולכן כדי לקצר את זמן האחזור, כדאי לצלם תמונות ברזולוציות נמוכות יותר. עם זאת, חשוב לזכור את דרישות הדיוק שמפורטות למעלה ולוודא שפניו של האדם שרוצים לזהות תופסים כמה שיותר מהתמונה. כדאי לעיין גם בטיפים לשיפור הביצועים בזמן אמת.
גם מיקוד לקוי של התמונה יכול להשפיע על הדיוק. אם התוצאות לא יהיו טובות, בקשו מהמשתמש לצלם מחדש את התמונה.
גם הכיוון של הפנים ביחס למצלמה יכול להשפיע על מאפייני הפנים ש-ML Kit מזהה. מושגים בנושא זיהוי פנים
1. הגדרת הכלי לזיהוי פנים
לפני שמפעילים זיהוי פנים בתמונה, אם רוצים לשנות את הגדרות ברירת המחדל של הכלי לזיהוי פנים, צריך לציין את ההגדרות האלה באמצעות אובייקטFaceDetectorOptions
.
אתם יכולים לשנות את ההגדרות הבאות:
הגדרות | |
---|---|
setPerformanceMode
|
PERFORMANCE_MODE_FAST (ברירת מחדל)
|
PERFORMANCE_MODE_ACCURATE
להעדיף מהירות או דיוק בזיהוי פנים. |
setLandmarkMode
|
LANDMARK_MODE_NONE (ברירת מחדל)
|
LANDMARK_MODE_ALL
אם לנסות לזהות 'נקודות ציון' בפנים: עיניים, אוזניים, אף, לחיים, פה וכו'. |
setContourMode
|
CONTOUR_MODE_NONE (ברירת מחדל)
|
CONTOUR_MODE_ALL
האם לזהות את קווי המתאר של תכונות הפנים. קווי המתאר מזוהים רק בפנים הבולטים ביותר בתמונה. |
setClassificationMode
|
CLASSIFICATION_MODE_NONE (ברירת מחדל)
|
CLASSIFICATION_MODE_ALL
האם לסווג את הפנים לקטגוריות כמו 'חיוך' ו'עיניים פקוחות'. |
setMinFaceSize
|
float (ברירת מחדל: 0.1f )
הגדרת גודל הפנים הקטן ביותר הרצוי, שמתבטא ביחס בין רוחב הראש לרוחב התמונה. |
enableTracking
|
false (ברירת מחדל) | true
אם להקצות לפנים מזהה, שאפשר להשתמש בו למעקב אחרי פנים בתמונות שונות. חשוב לזכור שכאשר התכונה 'זיהוי קווי מתאר' מופעלת, מזוהה רק פנים אחד, ולכן מעקב אחר הפנים לא מניב תוצאות שימושיות. לכן, וכדי לשפר את מהירות הזיהוי, לא מומלץ להפעיל גם זיהוי קווי מתאר וגם מעקב אחר פנים. |
לדוגמה:
Kotlin
// High-accuracy landmark detection and face classification val highAccuracyOpts = FaceDetectorOptions.Builder() .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE) .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL) .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL) .build() // Real-time contour detection val realTimeOpts = FaceDetectorOptions.Builder() .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL) .build()
Java
// High-accuracy landmark detection and face classification FaceDetectorOptions highAccuracyOpts = new FaceDetectorOptions.Builder() .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE) .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL) .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL) .build(); // Real-time contour detection FaceDetectorOptions realTimeOpts = new FaceDetectorOptions.Builder() .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL) .build();
2. הכנת קובץ הקלט
כדי לזהות פנים בתמונה, יוצרים אובייקטInputImage
מ-Bitmap
, מ-media.Image
, מ-ByteBuffer
, ממערך בייטים או מקובץ במכשיר. לאחר מכן מעבירים את האובייקט InputImage
לשיטה process
של FaceDetector
.
לזיהוי פנים, צריך להשתמש בתמונה בגודל של לפחות 480x360 פיקסלים. אם אתם מזהים פנים בזמן אמת, צילום של פריימים ברזולוציה המינימלית הזו יכול לעזור לצמצם את זמן האחזור.
אפשר ליצור אובייקט InputImage
ממקורות שונים, והסבר על כל אחד מהם מופיע בהמשך.
שימוש ב-media.Image
כדי ליצור אובייקט InputImage
מאובייקט media.Image
, למשל כשמעבירים תמונה מהמצלמה של המכשיר, מעבירים את האובייקט media.Image
ואת סיבוב התמונה אל InputImage.fromMediaImage()
.
אם אתם משתמשים בספרייה
CameraX, הערך של הזווית מחושב בשבילכם על ידי הכיתות OnImageCapturedListener
ו-ImageAnalysis.Analyzer
.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
אם אתם לא משתמשים בספריית מצלמה שמספקת את מידת הסיבוב של התמונה, תוכלו לחשב אותה לפי מידת הסיבוב של המכשיר והכיוון של חיישן המצלמה במכשיר:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
לאחר מכן מעבירים את האובייקט media.Image
ואת הערך של דרגת הסיבוב אל InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
שימוש ב-URI של קובץ
כדי ליצור אובייקט InputImage
מכתובת URI של קובץ, מעבירים את הקשר של האפליקציה ואת כתובת ה-URI של הקובץ ל-InputImage.fromFilePath()
. האפשרות הזו שימושית כשמשתמשים בכוונה ACTION_GET_CONTENT
כדי לבקש מהמשתמש לבחור תמונה מאפליקציית הגלריה שלו.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
שימוש ב-ByteBuffer
או ב-ByteArray
כדי ליצור אובייקט InputImage
מ-ByteBuffer
או מ-ByteArray
, קודם מחשבים את מידת הסיבוב של התמונה כפי שמתואר למעלה לגבי קלט media.Image
.
לאחר מכן, יוצרים את האובייקט InputImage
עם המאגר או המערך, יחד עם הגובה, הרוחב, פורמט קידוד הצבע ומידת הסיבוב של התמונה:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
שימוש ב-Bitmap
כדי ליצור אובייקט InputImage
מתוך אובייקט Bitmap
, צריך להצהיר על כך באופן הבא:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
התמונה מיוצגת על ידי אובייקט Bitmap
יחד עם מעלות הסיבוב.
3. אחזור מופע של FaceDetector
Kotlin
val detector = FaceDetection.getClient(options) // Or, to use the default option: // val detector = FaceDetection.getClient();
Java
FaceDetector detector = FaceDetection.getClient(options); // Or use the default options: // FaceDetector detector = FaceDetection.getClient();
4. עיבוד התמונה
מעבירים את התמונה לשיטהprocess
:
Kotlin
val result = detector.process(image) .addOnSuccessListener { faces -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<List<Face>> result = detector.process(image) .addOnSuccessListener( new OnSuccessListener<List<Face>>() { @Override public void onSuccess(List<Face> faces) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
5. קבלת מידע על פנים שזוהו
אם הפעולה של זיהוי הפנים תצליח, רשימה של אובייקטים מסוגFace
תועבר למאזין להצלחה. כל אובייקט Face
מייצג פנים שזוהו בתמונה. לכל פנים, אפשר לקבל את קואורדינטות המסגרת שלו בתמונה הקלט, וגם כל מידע אחר שהגדרתם לזיהוי הפנים למצוא. לדוגמה:
Kotlin
for (face in faces) { val bounds = face.boundingBox val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): val leftEar = face.getLandmark(FaceLandmark.LEFT_EAR) leftEar?.let { val leftEarPos = leftEar.position } // If contour detection was enabled: val leftEyeContour = face.getContour(FaceContour.LEFT_EYE)?.points val upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM)?.points // If classification was enabled: if (face.smilingProbability != null) { val smileProb = face.smilingProbability } if (face.rightEyeOpenProbability != null) { val rightEyeOpenProb = face.rightEyeOpenProbability } // If face tracking was enabled: if (face.trackingId != null) { val id = face.trackingId } }
Java
for (Face face : faces) { Rect bounds = face.getBoundingBox(); float rotY = face.getHeadEulerAngleY(); // Head is rotated to the right rotY degrees float rotZ = face.getHeadEulerAngleZ(); // Head is tilted sideways rotZ degrees // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): FaceLandmark leftEar = face.getLandmark(FaceLandmark.LEFT_EAR); if (leftEar != null) { PointF leftEarPos = leftEar.getPosition(); } // If contour detection was enabled: List<PointF> leftEyeContour = face.getContour(FaceContour.LEFT_EYE).getPoints(); List<PointF> upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM).getPoints(); // If classification was enabled: if (face.getSmilingProbability() != null) { float smileProb = face.getSmilingProbability(); } if (face.getRightEyeOpenProbability() != null) { float rightEyeOpenProb = face.getRightEyeOpenProbability(); } // If face tracking was enabled: if (face.getTrackingId() != null) { int id = face.getTrackingId(); } }
דוגמה לקווי מתאר של פנים
כשמפעילים את זיהוי קווי המתאר של הפנים, מקבלים רשימה של נקודות לכל מאפיין פנים שזוהה. הנקודות האלה מייצגות את הצורה של התכונה. במאמר מושגים של זיהוי פנים מוסבר איך מתבצעת הייצוג של קווי המתאר.
בתמונה הבאה מוסבר איך הנקודות האלה ממפות לפנים. לוחצים על התמונה כדי להגדיל אותה:
זיהוי פנים בזמן אמת
אם אתם רוצים להשתמש בזיהוי פנים באפליקציה בזמן אמת, כדאי לפעול לפי ההנחיות הבאות כדי להשיג את שיעורי הפריימים הטובים ביותר:
מגדירים את הכלי לזיהוי פנים כך שישתמש בזיהוי קווי המתאר של הפנים או בסיווג ובזיהוי ציוני דרך, אבל לא בשניהם:
זיהוי קווי מתאר
זיהוי ציוני דרך
סיווג
זיהוי וסיווג של ציוני דרך
זיהוי קווי מתאר וזיהוי ציוני דרך
זיהוי קווי מתאר וסיווג
זיהוי קווי מתאר, זיהוי ציוני דרך וסיווגמפעילים את מצב
FAST
(הוא מופעל כברירת מחדל).כדאי לצלם תמונות ברזולוציה נמוכה יותר. עם זאת, חשוב לזכור גם את הדרישות לגבי מידות התמונות ב-API הזה.
Camera
או ב-API של camera2
, כדאי לצמצם את מספר הקריאות לגלאי. אם מסגרת וידאו חדשה זמינה בזמן שהגלאי פועל, צריך להסיר את המסגרת. דוגמה לכך מופיעה בכיתה
VisionProcessorBase
באפליקציה לדוגמה במדריך למתחילים.
CameraX
, חשוב לוודא ששיטת לחץ החזרה מוגדרת לערך ברירת המחדל שלה,
ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
.
כך מובטח שרק תמונה אחת תישלח לניתוח בכל פעם. אם נוצרות תמונות נוספות כשהמנתח עסוק, הן יושמדו באופן אוטומטי ולא יעמדו בתור להעברה. אחרי שתמונה מסוימת נסגרת באמצעות קריאה ל-ImageProxy.close(), התמונה העדכנית הבאה תישלח.
CameraSourcePreview
ו-
GraphicOverlay
באפליקציית הדוגמה למדריך למתחילים.
ImageFormat.YUV_420_888
. אם משתמשים ב-Camera API הקודם, צריך לצלם תמונות בפורמט ImageFormat.NV21
.