Android पर एमएल किट की मदद से फ़ेस मेश की जानकारी का पता लगाएं

सेल्फ़ी जैसी इमेज और वीडियो में चेहरों का पता लगाने के लिए, ML Kit का इस्तेमाल किया जा सकता है.

चेहरे के मेश का पता लगाने वाला एपीआई
एसडीके का नामface-mesh-detection
लागू करनाकोड और ऐसेट, बिल्ड के समय आपके ऐप्लिकेशन से स्टैटिक तौर पर लिंक होती हैं.
ऐप्लिकेशन के साइज़ पर असर~6.4 एमबी
परफ़ॉर्मेंसज़्यादातर डिवाइसों पर रीयल-टाइम में उपलब्ध है.

इसे आज़माएं

शुरू करने से पहले

  1. अपने प्रोजेक्ट-लेवल की build.gradle फ़ाइल में, पक्का करें कि आपने Google की Maven रिपॉज़िटरी को buildscript और allprojects, दोनों सेक्शन में शामिल किया हो.

  2. अपने मॉड्यूल की ऐप्लिकेशन-लेवल की gradle फ़ाइल में, ML Kit की फ़ेस मेश डिटेक्शन लाइब्रेरी के लिए डिपेंडेंसी जोड़ें. यह फ़ाइल आम तौर पर app/build.gradle होती है:

    dependencies {
     // ...
    
     implementation 'com.google.mlkit:face-mesh-detection:16.0.0-beta1'
    }
    

इनपुट इमेज के लिए दिशा-निर्देश

  1. इमेज, डिवाइस के कैमरे से ~2 मीटर (~7 फ़ीट) के दायरे में ली जानी चाहिए, ताकि चेहरे इतने बड़े हों कि फ़ेस मेश को ऑप्टिमाइज़ तरीके से पहचाना जा सके. आम तौर पर, चेहरा जितना बड़ा होगा, चेहरे के मेश को पहचानने की सुविधा उतनी ही बेहतर होगी.

  2. चेहरा कैमरे की ओर होना चाहिए और कम से कम आधा चेहरा दिखना चाहिए. चेहरे और कैमरे के बीच कोई बड़ी चीज़ होने पर, नतीजे कम सटीक हो सकते हैं.

अगर आपको रीयल-टाइम ऐप्लिकेशन में चेहरों का पता लगाना है, तो आपको इनपुट इमेज के कुल डाइमेंशन पर भी ध्यान देना चाहिए. छोटी इमेज को तेज़ी से प्रोसेस किया जा सकता है. इसलिए, कम रिज़ॉल्यूशन पर इमेज कैप्चर करने से लेटेन्सी कम हो जाती है. हालांकि, ऊपर दी गई सटीक जानकारी से जुड़ी ज़रूरी शर्तों को ध्यान में रखें. साथ ही, यह पक्का करें कि इमेज में विषय का चेहरा ज़्यादा से ज़्यादा दिखे.

फ़ेस मेश डिटेक्टर को कॉन्फ़िगर करना

अगर आपको फ़ेस मेश डिटेक्टर की किसी डिफ़ॉल्ट सेटिंग में बदलाव करना है, तो FaceMeshDetectorOptions ऑब्जेक्ट का इस्तेमाल करके उन सेटिंग के बारे में बताएं. आप निम्‍न सेटिंग बदल सकते हैं:

  1. setUseCase

    • BOUNDING_BOX_ONLY: इसमें सिर्फ़ पहचाने गए चेहरे के मेश के लिए बाउंडिंग बॉक्स दिया जाता है. यह सबसे तेज़ फ़ेस डिटेक्टर है. हालांकि, इसकी रेंज सीमित है. कैमरे से चेहरे की दूरी ~2 मीटर या ~7 फ़ीट से ज़्यादा नहीं होनी चाहिए.

    • FACE_MESH (डिफ़ॉल्ट विकल्प): इससे बाउंडिंग बॉक्स और चेहरे के मेश की अतिरिक्त जानकारी मिलती है. जैसे, 468 3D पॉइंट और त्रिकोण की जानकारी. Pixel 3 पर मेज़र किए गए डेटा के मुताबिक, BOUNDING_BOX_ONLY के इस्तेमाल के मुकाबले, इस सुविधा के इस्तेमाल से डेटा ट्रांसफ़र में लगने वाला समय ~15% बढ़ जाता है.

उदाहरण के लिए:

Kotlin

val defaultDetector = FaceMeshDetection.getClient(
  FaceMeshDetectorOptions.DEFAULT_OPTIONS)

val boundingBoxDetector = FaceMeshDetection.getClient(
  FaceMeshDetectorOptions.Builder()
    .setUseCase(UseCase.BOUNDING_BOX_ONLY)
    .build()
)

Java

FaceMeshDetector defaultDetector =
        FaceMeshDetection.getClient(
                FaceMeshDetectorOptions.DEFAULT_OPTIONS);

FaceMeshDetector boundingBoxDetector = FaceMeshDetection.getClient(
        new FaceMeshDetectorOptions.Builder()
                .setUseCase(UseCase.BOUNDING_BOX_ONLY)
                .build()
        );

इनपुट इमेज तैयार करना

किसी इमेज में चेहरों का पता लगाने के लिए, InputImage ऑब्जेक्ट बनाएं. इसे Bitmap, media.Image, ByteBuffer, बाइट ऐरे या डिवाइस पर मौजूद किसी फ़ाइल से बनाया जा सकता है. इसके बाद, InputImage ऑब्जेक्ट को FaceDetector के process तरीके में पास करें.

चेहरे के मेश का पता लगाने के लिए, आपको कम से कम 480x360 पिक्सल डाइमेंशन वाली इमेज का इस्तेमाल करना चाहिए. अगर आपको रीयल टाइम में चेहरों का पता लगाना है, तो इस कम से कम रिज़ॉल्यूशन पर फ़्रेम कैप्चर करने से, लेटेन्सी को कम करने में मदद मिल सकती है.

अलग-अलग सोर्स से InputImage ऑब्जेक्ट बनाया जा सकता है. इनके बारे में यहां बताया गया है.

media.Image का इस्तेमाल करना

media.Image ऑब्जेक्ट से InputImage ऑब्जेक्ट बनाने के लिए, InputImage.fromMediaImage() को media.Image ऑब्जेक्ट और इमेज का रोटेशन पास करें. ऐसा तब किया जाता है, जब किसी डिवाइस के कैमरे से इमेज कैप्चर की जाती है.

अगर CameraX लाइब्रेरी का इस्तेमाल किया जाता है, तो OnImageCapturedListener और ImageAnalysis.Analyzer क्लास, रोटेशन वैल्यू का हिसाब लगाती हैं.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

अगर आपको ऐसी कैमरा लाइब्रेरी का इस्तेमाल नहीं करना है जिससे इमेज के रोटेशन डिग्री का पता चलता है, तो डिवाइस के रोटेशन डिग्री और डिवाइस में कैमरा सेंसर के ओरिएंटेशन से, इमेज के रोटेशन डिग्री का हिसाब लगाया जा सकता है:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

इसके बाद, media.Image ऑब्जेक्ट और रोटेशन डिग्री की वैल्यू को InputImage.fromMediaImage() में पास करें:

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

फ़ाइल यूआरआई का इस्तेमाल करना

किसी फ़ाइल यूआरआई से InputImage ऑब्जेक्ट बनाने के लिए, ऐप्लिकेशन के कॉन्टेक्स्ट और फ़ाइल यूआरआई को InputImage.fromFilePath() पर पास करें. यह तब काम आता है, जब आपको उपयोगकर्ता को उसकी गैलरी ऐप्लिकेशन से कोई इमेज चुनने के लिए प्रॉम्प्ट करना हो. इसके लिए, ACTION_GET_CONTENT इंटेंट का इस्तेमाल करें.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

ByteBuffer या ByteArray का इस्तेमाल करना

ByteBuffer या ByteArray से InputImage ऑब्जेक्ट बनाने के लिए, सबसे पहले इमेज के रोटेशन डिग्री का हिसाब लगाएं. इसके लिए, media.Image इनपुट के लिए पहले बताई गई प्रोसेस का इस्तेमाल करें. इसके बाद, बफ़र या ऐरे के साथ InputImage ऑब्जेक्ट बनाएं. साथ ही, इमेज की ऊंचाई, चौड़ाई, कलर एन्कोडिंग फ़ॉर्मैट, और रोटेशन डिग्री भी सेट करें:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Bitmap का इस्तेमाल करना

Bitmap ऑब्जेक्ट से InputImage ऑब्जेक्ट बनाने के लिए, यह एलान करें:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

इमेज को Bitmap ऑब्जेक्ट के तौर पर दिखाया गया है. साथ ही, इसे घुमाने की डिग्री भी दिखाई गई है.

इमेज को प्रोसेस करना

इमेज को process तरीके से पास करें:

Kotlin

val result = detector.process(image)
        .addOnSuccessListener { result ->
            // Task completed successfully
            // …
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // …
        }

Java

Task<List<FaceMesh>> result = detector.process(image)
        .addOnSuccessListener(
                new OnSuccessListener<List<FaceMesh>>() {
                    @Override
                    public void onSuccess(List<FaceMesh> result) {
                        // Task completed successfully
                        // …
                    }
                })
        .addOnFailureListener(
                new OnFailureListener() {
                    @Override
                    Public void onFailure(Exception e) {
                        // Task failed with an exception
                        // …
                    }
                });

चेहरे पर मौजूद जाल के बारे में जानकारी पाना

अगर इमेज में किसी चेहरे का पता चलता है, तो FaceMesh ऑब्जेक्ट की सूची को सक्सेस लिसनर को पास किया जाता है. हर FaceMesh, इमेज में पहचाने गए चेहरे को दिखाता है. हर फ़ेस मेश के लिए, आपको इनपुट इमेज में उसके बाउंडिंग कोऑर्डिनेट मिल सकते हैं. साथ ही, आपको कोई भी ऐसी जानकारी मिल सकती है जिसे ढूंढने के लिए आपने फ़ेस मेश डिटेक्टर को कॉन्फ़िगर किया है.

Kotlin

for (faceMesh in faceMeshs) {
    val bounds: Rect = faceMesh.boundingBox()

    // Gets all points
    val faceMeshpoints = faceMesh.allPoints
    for (faceMeshpoint in faceMeshpoints) {
      val index: Int = faceMeshpoints.index()
      val position = faceMeshpoint.position
    }

    // Gets triangle info
    val triangles: List<Triangle<FaceMeshPoint>> = faceMesh.allTriangles
    for (triangle in triangles) {
      // 3 Points connecting to each other and representing a triangle area.
      val connectedPoints = triangle.allPoints()
    }
}

Java

for (FaceMesh faceMesh : faceMeshs) {
    Rect bounds = faceMesh.getBoundingBox();

    // Gets all points
    List<FaceMeshPoint> faceMeshpoints = faceMesh.getAllPoints();
    for (FaceMeshPoint faceMeshpoint : faceMeshpoints) {
        int index = faceMeshpoints.getIndex();
        PointF3D position = faceMeshpoint.getPosition();
    }

    // Gets triangle info
    List<Triangle<FaceMeshPoint>> triangles = faceMesh.getAllTriangles();
    for (Triangle<FaceMeshPoint> triangle : triangles) {
        // 3 Points connecting to each other and representing a triangle area.
        List<FaceMeshPoint> connectedPoints = triangle.getAllPoints();
    }
}