Gesichts-Mesh-Informationen mit ML Kit auf Android erkennen

Mit ML Kit können Sie Gesichter in Selfie-ähnlichen Bildern und Videos erkennen.

Face Mesh Detection API
SDK-Nameface-mesh-detection
ImplementierungCode und Assets werden bei der Build-Phase statisch mit Ihrer App verknüpft.
Auswirkungen der App-Größe~6,4 MB
LeistungAuf den meisten Geräten in Echtzeit.

Jetzt ausprobieren

Hinweis

  1. In die Datei build.gradle auf Projektebene muss das Maven-Repository von Google in die Abschnitte „buildscript“ und „allprojects“ aufgenommen werden.

  2. Fügen Sie die Abhängigkeit für die ML Kit-Bibliothek zur Gesichtserkennung in der Gradle-Datei des Moduls auf App-Ebene hinzu, die in der Regel app/build.gradle lautet:

    dependencies {
     // ...
    
     implementation 'com.google.mlkit:face-mesh-detection:16.0.0-beta1'
    }
    

Richtlinien für Eingabebilder

  1. Die Bilder sollten maximal 2 Meter von der Kamera des Geräts entfernt aufgenommen werden, damit die Gesichter für eine optimale Gesichts-Mesh-Erkennung groß genug sind. Je größer das Gesicht, desto besser ist die Gesichts-Mesh-Erkennung.

  2. Das Gesicht sollte zur Kamera gerichtet sein und mindestens die Hälfte des Gesichts sollte sichtbar sein. Große Objekte zwischen Gesicht und Kamera können zu einer geringeren Genauigkeit führen.

Wenn Sie Gesichter in einer Echtzeitanwendung erkennen möchten, sollten Sie auch die Gesamtabmessungen des Eingabebilds berücksichtigen. Kleinere Bilder können schneller verarbeitet werden. Wenn Sie Bilder mit niedrigerer Auflösung aufnehmen, wird die Latenz reduziert. Beachten Sie jedoch die oben genannten Anforderungen an die Genauigkeit und achten Sie darauf, dass das Gesicht des Motivs möglichst viel Platz auf dem Bild einnimmt.

Mesh-Gesichtserkennung konfigurieren

Wenn Sie die Standardeinstellungen des Face Mesh-Detektors ändern möchten, geben Sie diese Einstellungen mit einem FaceMeshDetectorOptions-Objekt an. Sie können die folgenden Einstellungen ändern:

  1. setUseCase

    • BOUNDING_BOX_ONLY: Bietet nur einen Begrenzungsrahmen für ein erkanntes Gesichts-Mesh. Dies ist die schnellste Gesichtserkennung, hat aber eine begrenzte Reichweite(Gesichter müssen sich in einem Umkreis von etwa 2 Metern um die Kamera befinden).

    • FACE_MESH (Standardoption): Bietet einen Begrenzungsrahmen und zusätzliche Informationen zum Gesichts-Mesh (468 3D-Punkte und Dreiecksinformationen). Im Vergleich zum Anwendungsfall BOUNDING_BOX_ONLY erhöht sich die Latenz auf Pixel 3 um etwa 15 %.

Beispiel:

Kotlin

val defaultDetector = FaceMeshDetection.getClient(
  FaceMeshDetectorOptions.DEFAULT_OPTIONS)

val boundingBoxDetector = FaceMeshDetection.getClient(
  FaceMeshDetectorOptions.Builder()
    .setUseCase(UseCase.BOUNDING_BOX_ONLY)
    .build()
)

Java

FaceMeshDetector defaultDetector =
        FaceMeshDetection.getClient(
                FaceMeshDetectorOptions.DEFAULT_OPTIONS);

FaceMeshDetector boundingBoxDetector = FaceMeshDetection.getClient(
        new FaceMeshDetectorOptions.Builder()
                .setUseCase(UseCase.BOUNDING_BOX_ONLY)
                .build()
        );

Eingabebild vorbereiten

Wenn Sie Gesichter in einem Bild erkennen möchten, erstellen Sie ein InputImage-Objekt aus einem Bitmap-, media.Image-, ByteBuffer-, Byte-Array oder einer Datei auf dem Gerät. Übergeben Sie dann das InputImage-Objekt an die process-Methode von FaceDetector.

Für die Gesichts-Mesh-Erkennung sollten Sie ein Bild mit mindestens 480 × 360 Pixeln verwenden. Wenn Sie Gesichter in Echtzeit erkennen, kann die Aufnahme von Frames mit dieser Mindestauflösung die Latenz verringern.

Sie können ein InputImage-Objekt aus verschiedenen Quellen erstellen. Im Folgenden werden die einzelnen Quellen erläutert.

Mit einem media.Image

Wenn Sie ein InputImage-Objekt aus einem media.Image-Objekt erstellen möchten, z. B. wenn Sie ein Bild mit der Kamera eines Geräts aufnehmen, übergeben Sie das media.Image-Objekt und die Drehung des Bildes an InputImage.fromMediaImage().

Wenn Sie die CameraX-Bibliothek verwenden, wird der Drehwert von den Klassen OnImageCapturedListener und ImageAnalysis.Analyzer berechnet.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Wenn Sie keine Kamerabibliothek verwenden, die den Drehwinkel des Bildes angibt, können Sie ihn anhand des Drehwinkels des Geräts und der Ausrichtung des Kamerasensors im Gerät berechnen:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Übergeben Sie dann das media.Image-Objekt und den Wert für den Drehungsgrad an InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Datei-URI verwenden

Wenn du ein InputImage-Objekt aus einem Datei-URI erstellen möchtest, übergebe den App-Kontext und den Datei-URI an InputImage.fromFilePath(). Das ist nützlich, wenn Sie mit einer ACTION_GET_CONTENT-Intent den Nutzer auffordern, ein Bild aus seiner Galerie-App auszuwählen.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Mit einem ByteBuffer oder ByteArray

Wenn Sie ein InputImage-Objekt aus einem ByteBuffer oder ByteArray erstellen möchten, berechnen Sie zuerst den Drehwinkel des Bildes, wie oben für die media.Image-Eingabe beschrieben. Erstellen Sie dann das InputImage-Objekt mit dem Puffer oder Array sowie der Höhe, Breite, Farbcodierung und dem Drehwinkel des Bilds:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Mit einem Bitmap

Wenn Sie ein InputImage-Objekt aus einem Bitmap-Objekt erstellen möchten, verwenden Sie die folgende Deklaration:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Das Bild wird durch ein Bitmap-Objekt zusammen mit den Drehgraden dargestellt.

Bild verarbeiten

Übergeben Sie das Bild an die process-Methode:

Kotlin

val result = detector.process(image)
        .addOnSuccessListener { result ->
            // Task completed successfully
            // …
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // …
        }

Java

Task<List<FaceMesh>> result = detector.process(image)
        .addOnSuccessListener(
                new OnSuccessListener<List<FaceMesh>>() {
                    @Override
                    public void onSuccess(List<FaceMesh> result) {
                        // Task completed successfully
                        // …
                    }
                })
        .addOnFailureListener(
                new OnFailureListener() {
                    @Override
                    Public void onFailure(Exception e) {
                        // Task failed with an exception
                        // …
                    }
                });

Informationen zum erkannten Gesichts-Mesh abrufen

Wenn im Bild ein Gesicht erkannt wird, wird dem Erfolgs-Listener eine Liste von FaceMesh-Objekten übergeben. Jedes FaceMesh steht für ein Gesicht, das im Bild erkannt wurde. Für jedes Gesicht-Mesh können Sie die Begrenzungskoordinaten im Eingabebild sowie alle anderen Informationen abrufen, die Sie für den Gesichts-Mesh-Detektor konfiguriert haben.

Kotlin

for (faceMesh in faceMeshs) {
    val bounds: Rect = faceMesh.boundingBox()

    // Gets all points
    val faceMeshpoints = faceMesh.allPoints
    for (faceMeshpoint in faceMeshpoints) {
      val index: Int = faceMeshpoints.index()
      val position = faceMeshpoint.position
    }

    // Gets triangle info
    val triangles: List<Triangle<FaceMeshPoint>> = faceMesh.allTriangles
    for (triangle in triangles) {
      // 3 Points connecting to each other and representing a triangle area.
      val connectedPoints = triangle.allPoints()
    }
}

Java

for (FaceMesh faceMesh : faceMeshs) {
    Rect bounds = faceMesh.getBoundingBox();

    // Gets all points
    List<FaceMeshPoint> faceMeshpoints = faceMesh.getAllPoints();
    for (FaceMeshPoint faceMeshpoint : faceMeshpoints) {
        int index = faceMeshpoints.getIndex();
        PointF3D position = faceMeshpoint.getPosition();
    }

    // Gets triangle info
    List<Triangle<FaceMeshPoint>> triangles = faceMesh.getAllTriangles();
    for (Triangle<FaceMeshPoint> triangle : triangles) {
        // 3 Points connecting to each other and representing a triangle area.
        List<FaceMeshPoint> connectedPoints = triangle.getAllPoints();
    }
}