Android पर एमएल किट की मदद से फ़ेस मेश की जानकारी का पता लगाएं

सेल्फ़ी जैसी इमेज और वीडियो में चेहरों का पता लगाने के लिए, ML Kit का इस्तेमाल किया जा सकता है.

चेहरे के मेश का पता लगाने वाला एपीआई
SDK टूल का नामface-mesh-detection
लागू करनाकोड और ऐसेट, बिल्ड के समय आपके ऐप्लिकेशन से स्टैटिक तौर पर लिंक होती हैं.
ऐप्लिकेशन के साइज़ का असर~6.4 एमबी
परफ़ॉर्मेंसज़्यादातर डिवाइसों पर रीयल-टाइम में.

इसे आज़माएं

शुरू करने से पहले

  1. प्रोजेक्ट-लेवल की build.gradle फ़ाइल में, अपने buildscript और allprojects सेक्शन, दोनों में Google की Maven रिपॉज़िटरी को शामिल करना न भूलें.

  2. अपने मॉड्यूल की ऐप्लिकेशन-लेवल की Gradle फ़ाइल में, ML Kit की चेहरे की मेश की पहचान करने वाली लाइब्रेरी की डिपेंडेंसी जोड़ें. आम तौर पर, यह app/build.gradle होती है:

    dependencies {
     // ...
    
     implementation 'com.google.mlkit:face-mesh-detection:16.0.0-beta1'
    }
    

इनपुट इमेज के लिए दिशा-निर्देश

  1. इमेज, डिवाइस के कैमरे से करीब दो मीटर (~सात फ़ीट) की दूरी से ली जानी चाहिए, ताकि चेहरे की मेश की पहचान बेहतर तरीके से की जा सके. आम तौर पर, चेहरे का साइज़ जितना बड़ा होगा, फ़ेस मेश की पहचान उतनी ही बेहतर होगी.

  2. चेहरा कैमरे के सामने होना चाहिए और कम से कम आधा चेहरा दिखना चाहिए. चेहरे और कैमरे के बीच कोई बड़ा ऑब्जेक्ट होने पर, माप की सटीकता कम हो सकती है.

अगर आपको रीयल-टाइम ऐप्लिकेशन में चेहरों का पता लगाना है, तो आपको इनपुट इमेज के सभी डाइमेंशन पर भी ध्यान देना चाहिए. छोटी इमेज को तेज़ी से प्रोसेस किया जा सकता है. इसलिए, कम रिज़ॉल्यूशन में इमेज कैप्चर करने से, इंतज़ार का समय कम हो जाता है. हालांकि, ऊपर दी गई सटीक जानकारी से जुड़ी ज़रूरी शर्तों को ध्यान में रखें. साथ ही, पक्का करें कि व्यक्ति का चेहरा ज़्यादा से ज़्यादा इमेज में दिख रहा हो.

फ़ेस मेश डिटेक्टर को कॉन्फ़िगर करना

अगर आपको फ़ेस मेश डिटेक्टर की किसी भी डिफ़ॉल्ट सेटिंग में बदलाव करना है, तो FaceMeshDetectorOptions ऑब्जेक्ट की मदद से उन सेटिंग की जानकारी दें. आप निम्‍न सेटिंग बदल सकते हैं:

  1. setUseCase

    • BOUNDING_BOX_ONLY: यह सिर्फ़ पहचानी गई फ़ेस मेश के लिए बाउंडिंग बॉक्स उपलब्ध कराता है. यह सबसे तेज़ चेहरे की पहचान करने वाला मॉडल है. हालांकि, इसकी रेंज सीमित है. चेहरे को कैमरे से ~2 मीटर या ~7 फ़ीट के अंदर होना चाहिए.

    • FACE_MESH (डिफ़ॉल्ट विकल्प): यह बॉउंडिंग बॉक्स और फ़ेस मेश की ज़्यादा जानकारी (468 3D पॉइंट और ट्रैंगल की जानकारी) देता है. BOUNDING_BOX_ONLY के इस्तेमाल के उदाहरण की तुलना में, Pixel 3 पर मेज़र किए गए लेटलेंसी में ~15% की बढ़ोतरी हुई.

उदाहरण के लिए:

Kotlin

val defaultDetector = FaceMeshDetection.getClient(
  FaceMeshDetectorOptions.DEFAULT_OPTIONS)

val boundingBoxDetector = FaceMeshDetection.getClient(
  FaceMeshDetectorOptions.Builder()
    .setUseCase(UseCase.BOUNDING_BOX_ONLY)
    .build()
)

Java

FaceMeshDetector defaultDetector =
        FaceMeshDetection.getClient(
                FaceMeshDetectorOptions.DEFAULT_OPTIONS);

FaceMeshDetector boundingBoxDetector = FaceMeshDetection.getClient(
        new FaceMeshDetectorOptions.Builder()
                .setUseCase(UseCase.BOUNDING_BOX_ONLY)
                .build()
        );

इनपुट इमेज तैयार करना

किसी इमेज में चेहरों का पता लगाने के लिए, डिवाइस पर मौजूद Bitmap, media.Image, ByteBuffer, बाइट कलेक्शन या फ़ाइल में से किसी एक से InputImage ऑब्जेक्ट बनाएं. इसके बाद, InputImage ऑब्जेक्ट को FaceDetector के process तरीके में पास करें.

फ़ेस मेश की पहचान करने के लिए, आपको कम से कम 480x360 पिक्सल के डाइमेंशन वाली इमेज का इस्तेमाल करना चाहिए. अगर रीयल टाइम में चेहरों का पता लगाया जा रहा है, तो कम से कम इस रिज़ॉल्यूशन में फ़्रेम कैप्चर करने से, इंतज़ार का समय कम किया जा सकता है.

अलग-अलग सोर्स से InputImage ऑब्जेक्ट बनाया जा सकता है. इनमें से हर सोर्स के बारे में यहां बताया गया है.

media.Image का इस्तेमाल करना

media.Image ऑब्जेक्ट से InputImage ऑब्जेक्ट बनाने के लिए, media.Image ऑब्जेक्ट और इमेज के रोटेशन को InputImage.fromMediaImage() में पास करें. ऐसा तब किया जाता है, जब किसी डिवाइस के कैमरे से इमेज कैप्चर की जाती है.

अगर CameraX लाइब्रेरी का इस्तेमाल किया जाता है, तो OnImageCapturedListener और ImageAnalysis.Analyzer क्लास आपके लिए रोटेशन वैल्यू का हिसाब लगाती हैं.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

अगर आपने ऐसी कैमरा लाइब्रेरी का इस्तेमाल नहीं किया है जो इमेज के घूमने की डिग्री बताती है, तो डिवाइस के घूमने की डिग्री और डिवाइस में कैमरे के सेंसर के ओरिएंटेशन से इसका हिसाब लगाया जा सकता है:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

इसके बाद, media.Image ऑब्जेक्ट और InputImage.fromMediaImage() में घुमाव की डिग्री की वैल्यू पास करें:

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

फ़ाइल के यूआरआई का इस्तेमाल करना

फ़ाइल यूआरआई से InputImage ऑब्जेक्ट बनाने के लिए, ऐप्लिकेशन कॉन्टेक्स्ट और फ़ाइल यूआरआई को InputImage.fromFilePath() में पास करें. यह तब काम आता है, जब उपयोगकर्ता को अपने गैलरी ऐप्लिकेशन से कोई इमेज चुनने के लिए कहने के लिए, ACTION_GET_CONTENT इंटेंट का इस्तेमाल किया जाता है.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

ByteBuffer या ByteArray का इस्तेमाल करना

ByteBuffer या ByteArray से InputImage आइटम बनाने के लिए, सबसे पहले इमेज के घूमने की डिग्री का हिसाब लगाएं. यह हिसाब लगाने का तरीका, media.Image इनपुट के लिए पहले बताया गया है. इसके बाद, बफ़र या ऐरे के साथ InputImage ऑब्जेक्ट बनाएं. साथ ही, इमेज की ऊंचाई, चौड़ाई, कलर कोडिंग फ़ॉर्मैट, और घुमाव की डिग्री भी डालें:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Bitmap का इस्तेमाल करना

Bitmap ऑब्जेक्ट से InputImage ऑब्जेक्ट बनाने के लिए, यह एलान करें:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

इमेज को घुमाने के डिग्री के साथ Bitmap ऑब्जेक्ट से दिखाया जाता है.

इमेज को प्रोसेस करना

इमेज को process वाले तरीके पर पास करें:

Kotlin

val result = detector.process(image)
        .addOnSuccessListener { result ->
            // Task completed successfully
            // …
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // …
        }

Java

Task<List<FaceMesh>> result = detector.process(image)
        .addOnSuccessListener(
                new OnSuccessListener<List<FaceMesh>>() {
                    @Override
                    public void onSuccess(List<FaceMesh> result) {
                        // Task completed successfully
                        // …
                    }
                })
        .addOnFailureListener(
                new OnFailureListener() {
                    @Override
                    Public void onFailure(Exception e) {
                        // Task failed with an exception
                        // …
                    }
                });

पहचाने गए चेहरे के मेश के बारे में जानकारी पाना

अगर इमेज में कोई चेहरा मिलता है, तो FaceMesh ऑब्जेक्ट की सूची, सक्सेस ऑब्जेक्ट के लिसनर को भेजी जाती है. हर FaceMesh, इमेज में पहचानी गई किसी चेहरे को दिखाता है. हर फ़ेस मेश के लिए, इनपुट इमेज में उसके बाउंडिंग निर्देशांक के साथ-साथ, वह जानकारी भी मिल सकती है जिसे ढूंढने के लिए आपने फ़ेस मेश डिटेक्टर को कॉन्फ़िगर किया है.

Kotlin

for (faceMesh in faceMeshs) {
    val bounds: Rect = faceMesh.boundingBox()

    // Gets all points
    val faceMeshpoints = faceMesh.allPoints
    for (faceMeshpoint in faceMeshpoints) {
      val index: Int = faceMeshpoints.index()
      val position = faceMeshpoint.position
    }

    // Gets triangle info
    val triangles: List<Triangle<FaceMeshPoint>> = faceMesh.allTriangles
    for (triangle in triangles) {
      // 3 Points connecting to each other and representing a triangle area.
      val connectedPoints = triangle.allPoints()
    }
}

Java

for (FaceMesh faceMesh : faceMeshs) {
    Rect bounds = faceMesh.getBoundingBox();

    // Gets all points
    List<FaceMeshPoint> faceMeshpoints = faceMesh.getAllPoints();
    for (FaceMeshPoint faceMeshpoint : faceMeshpoints) {
        int index = faceMeshpoints.getIndex();
        PointF3D position = faceMeshpoint.getPosition();
    }

    // Gets triangle info
    List<Triangle<FaceMeshPoint>> triangles = faceMesh.getAllTriangles();
    for (Triangle<FaceMeshPoint> triangle : triangles) {
        // 3 Points connecting to each other and representing a triangle area.
        List<FaceMeshPoint> connectedPoints = triangle.getAllPoints();
    }
}