Sie können ML Kit verwenden, um in einem Bild erkannte Objekte mit Labels zu versehen. Das Standardmodell, das mit ML Kit unterstützt über 400 verschiedene Labels.
<ph type="x-smartling-placeholder">Funktion | Nicht gebündelt | Gebündelt |
---|---|---|
Implementierung | Das Modell wird über die Google Play-Dienste dynamisch heruntergeladen. | Das Modell ist bei der Erstellung statisch mit Ihrem verknüpft. |
App-Größe | Die Größe wurde um etwa 200 KB erhöht. | Die Größe wird um etwa 5,7 MB erhöht. |
Initialisierungszeit | Vor der ersten Verwendung kann es möglicherweise etwas dauern, bis das Modell heruntergeladen wurde. | Modell ist sofort verfügbar |
Jetzt ausprobieren
- Probieren Sie die Beispiel-App aus, um sehen Sie sich ein Anwendungsbeispiel für diese API an.
Hinweis
<ph type="x-smartling-placeholder">In der Datei
build.gradle
auf Projektebene müssen Sie die Parameter von Google Maven-Repository in den Abschnittenbuildscript
undallprojects
.Fügen Sie die Abhängigkeiten für die ML Kit-Android-Bibliotheken Ihres Moduls Gradle-Datei auf App-Ebene, in der Regel
app/build.gradle
. Wählen Sie eine der folgenden Optionen aus: die folgenden Abhängigkeiten verwenden:So bündeln Sie das Modell mit Ihrer App:
dependencies { // ... // Use this dependency to bundle the model with your app implementation 'com.google.mlkit:image-labeling:17.0.9' }
Verwendung des Modells in den Google Play-Diensten:
dependencies { // ... // Use this dependency to use the dynamically downloaded model in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-image-labeling:16.0.8' }
Wenn Sie das Modell in den Google Play-Diensten verwenden möchten, können Sie wird das Modell automatisch auf das Gerät heruntergeladen, aus dem Play Store installiert haben. Fügen Sie dazu die folgende Deklaration der Datei
AndroidManifest.xml
Ihrer App:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="ica" > <!-- To use multiple models: android:value="ica,model2,model3" --> </application>
Sie können die Modellverfügbarkeit auch explizit prüfen und den Download über Die Google Play-Dienste ModuleInstallClient API.
Wenn Sie das Herunterladen von Modellen bei der Installation nicht aktivieren oder einen expliziten Download anfordern, wird das Modell beim ersten Ausführen des Labelerstellers heruntergeladen. Von Ihnen gestellte Anfragen bevor der Download abgeschlossen ist, keine Ergebnisse liefern.
Jetzt können Sie den Bildern Labels hinzufügen.
1. Eingabebild vorbereiten
Erstellen Sie einInputImage
-Objekt aus Ihrem Bild.
Der Labelersteller wird am schnellsten ausgeführt, wenn Sie ein Bitmap
oder das
Camera2 API, eine YUV_420_888 media.Image
, die empfohlen wird, wenn
möglich.
Sie können eine InputImage
erstellen
aus verschiedenen Quellen stammen. Diese werden im Folgenden erläutert.
Mit einem media.Image
So erstellen Sie eine InputImage
:
media.Image
-Objekts erstellen, beispielsweise wenn Sie ein Bild von einem
des Geräts an, übergeben Sie das media.Image
-Objekt und die
Drehung auf InputImage.fromMediaImage()
.
Wenn Sie die Methode
<ph type="x-smartling-placeholder"></ph>
CameraX-Bibliothek, den OnImageCapturedListener
und
ImageAnalysis.Analyzer
-Klassen berechnen den Rotationswert
für Sie.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Wenn Sie keine Kamerabibliothek verwenden, die Ihnen den Drehungsgrad des Bildes anzeigt, lässt sich anhand des Drehungsgrads des Geräts und der Ausrichtung der Kamera berechnen. Sensor im Gerät:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Übergeben Sie dann das media.Image
-Objekt und den
Wert für Rotationsgrad auf InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Datei-URI verwenden
So erstellen Sie eine InputImage
:
aus einem Datei-URI entfernen möchten, übergeben Sie den App-Kontext und den Datei-URI an
InputImage.fromFilePath()
. Dies ist nützlich, wenn Sie
Verwenden Sie den Intent ACTION_GET_CONTENT
, um den Nutzer zur Auswahl aufzufordern
ein Bild aus ihrer Galerie-App.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
ByteBuffer
oder ByteArray
verwenden
So erstellen Sie eine InputImage
:
aus einem ByteBuffer
- oder ByteArray
-Objekt zu erstellen, berechnen Sie
Drehung wie zuvor für die media.Image
-Eingabe beschrieben.
Erstellen Sie dann das InputImage
-Objekt mit dem Zwischenspeicher oder Array
Höhe, Breite, Farbcodierungsformat und Drehungsgrad:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Mit einem Bitmap
So erstellen Sie eine InputImage
:
Bitmap
-Objekt zu erstellen, nehmen Sie folgende Deklaration vor:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Das Bild wird durch ein Bitmap
-Objekt in Verbindung mit Drehungsgrad dargestellt.
2. Labelersteller für Images konfigurieren und ausführen
Um Objekte in einem Bild mit einem Label zu versehen, übergeben Sie dasInputImage
-Objekt an die
Die Methode process
von ImageLabeler
.
Rufen Sie zuerst eine Instanz
ImageLabeler
Wenn Sie den On-Device-Image-Labeler auf dem Gerät verwenden möchten, müssen Sie Folgendes tun: Erklärung:
Kotlin
// To use default options: val labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS) // Or, to set the minimum confidence required: // val options = ImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = ImageLabeling.getClient(options)
Java
// To use default options: ImageLabeler labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS); // Or, to set the minimum confidence required: // ImageLabelerOptions options = // new ImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // ImageLabeler labeler = ImageLabeling.getClient(options);
- Übergeben Sie dann das Bild an die Methode
process()
:
Kotlin
labeler.process(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
labeler.process(image) .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() { @Override public void onSuccess(List<ImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
3. Informationen zu Objekten mit Label abrufen
Wenn der Vorgang zur Labelerstellung erfolgreich war, wird eine Liste derImageLabel
-Objekte werden an den Erfolgs-Listener übergeben. Jedes
Das ImageLabel
-Objekt steht für etwas, das im Bild mit einem Label versehen wurde. Basis
Modell unterstützt mehr als 400 verschiedene Labels.
Sie können die Textbeschreibung jedes Labels abrufen, die unter allen von
das Modell und den Konfidenzwert der Übereinstimmung. Beispiel:
Kotlin
for (label in labels) { val text = label.text val confidence = label.confidence val index = label.index }
Java
for (ImageLabel label : labels) { String text = label.getText(); float confidence = label.getConfidence(); int index = label.getIndex(); }
Tipps zum Verbessern der Leistung in Echtzeit
Wenn Sie Bilder in einer Echtzeitanwendung mit Labels versehen möchten, gehen Sie so vor: um optimale Framerates zu erzielen:
- Wenn Sie die Methode
Camera
odercamera2
API, die Aufrufe an den Labelersteller für das Bild drosseln. Wenn ein neues Video Frame verfügbar wird, während der Bildlabelersteller ausgeführt wird, lassen Sie den Frame weg. Weitere Informationen finden Sie in der <ph type="x-smartling-placeholder"></ph>VisionProcessorBase
in der Kurzanleitung für die Beispielanwendung finden Sie ein Beispiel. - Wenn Sie die
CameraX
API verwenden, Achten Sie darauf, dass die Rückstaustrategie auf den Standardwert eingestellt ist <ph type="x-smartling-placeholder"></ph>ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
Dadurch wird garantiert, dass jeweils nur ein Bild zur Analyse geliefert wird. Wenn weitere Bilder wenn der Analysator beschäftigt ist, werden sie automatisch abgebrochen und nicht in die Warteschlange Auslieferung. Sobald das zu analysierende Bild durch Aufrufen ImageProxy.close() wird das nächste Bild geliefert. - Wenn Sie die Ausgabe des Bildlabelerstellers verwenden, um Grafiken
Eingabebild, rufen Sie zuerst das Ergebnis aus ML Kit ab und rendern Sie das Bild
in einem Schritt übereinanderlegen. Dadurch wird die Anzeigeoberfläche gerendert,
für jeden Eingabe-Frame nur einmal. Weitere Informationen finden Sie in der
<ph type="x-smartling-placeholder"></ph>
CameraSourcePreview
und <ph type="x-smartling-placeholder"></ph>GraphicOverlay
-Klassen in der Schnellstart-Beispiel-App als Beispiel. - Wenn Sie die Camera2 API verwenden, nehmen Sie Bilder in
ImageFormat.YUV_420_888
-Format. Wenn Sie die ältere Camera API verwenden, nehmen Sie Bilder inImageFormat.NV21
-Format.