আপনি ছবিতে স্বীকৃত বস্তুগুলিকে লেবেল করতে ML Kit ব্যবহার করতে পারেন। ML Kit-এর সাথে প্রদত্ত ডিফল্ট মডেলটি 400+ বিভিন্ন লেবেল সমর্থন করে।
| বৈশিষ্ট্য | আনবান্ডেলড | বান্ডিলযুক্ত |
|---|---|---|
| বাস্তবায়ন | মডেলটি গুগল প্লে সার্ভিসেসের মাধ্যমে গতিশীলভাবে ডাউনলোড করা হয়। | মডেলটি আপনার তৈরির সময়ের সাথে স্ট্যাটিক্যালি লিঙ্কযুক্ত। |
| অ্যাপের আকার | প্রায় ২০০ কিলোবাইট আকার বৃদ্ধি। | প্রায় ৫.৭ মেগাবাইট সাইজ বৃদ্ধি। |
| আরম্ভের সময় | প্রথম ব্যবহারের আগে মডেলটি ডাউনলোড হওয়ার জন্য অপেক্ষা করতে হতে পারে। | মডেলটি অবিলম্বে উপলব্ধ। |
চেষ্টা করে দেখো
- এই API এর একটি উদাহরণ ব্যবহারের জন্য নমুনা অ্যাপটি ব্যবহার করুন।
শুরু করার আগে
আপনার প্রজেক্ট-লেভেল
build.gradleফাইলে, আপনারbuildscriptএবংallprojectsউভয় বিভাগেই Google এর Maven রিপোজিটরি অন্তর্ভুক্ত করতে ভুলবেন না।আপনার মডিউলের অ্যাপ-লেভেল গ্রেডল ফাইলে ML কিট অ্যান্ড্রয়েড লাইব্রেরির জন্য নির্ভরতা যোগ করুন, যা সাধারণত
app/build.gradleহয়। আপনার প্রয়োজনের উপর ভিত্তি করে নিম্নলিখিত নির্ভরতাগুলির মধ্যে একটি বেছে নিন:আপনার অ্যাপের সাথে মডেলটি বান্ডেল করার জন্য:
dependencies { // ... // Use this dependency to bundle the model with your app implementation 'com.google.mlkit:image-labeling:17.0.9' }গুগল প্লে সার্ভিসে মডেলটি ব্যবহারের জন্য:
dependencies { // ... // Use this dependency to use the dynamically downloaded model in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-image-labeling:16.0.8' }যদি আপনি Google Play Services-এ মডেলটি ব্যবহার করতে চান , তাহলে Play Store থেকে আপনার অ্যাপটি ইনস্টল করার পরে ডিভাইসে স্বয়ংক্রিয়ভাবে মডেলটি ডাউনলোড করার জন্য আপনি আপনার অ্যাপটি কনফিগার করতে পারেন। এটি করার জন্য, আপনার অ্যাপের
AndroidManifest.xmlফাইলে নিম্নলিখিত ঘোষণাটি যোগ করুন:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="ica" > <!-- To use multiple models: android:value="ica,model2,model3" --> </application>আপনি Google Play পরিষেবা ModuleInstallClient API এর মাধ্যমে মডেলের উপলব্ধতা স্পষ্টভাবে পরীক্ষা করতে পারেন এবং ডাউনলোডের অনুরোধ করতে পারেন।
যদি আপনি ইনস্টল-টাইম মডেল ডাউনলোড সক্ষম না করেন বা স্পষ্ট ডাউনলোডের অনুরোধ না করেন, তাহলে লেবেলারটি প্রথমবার চালানোর সাথে সাথে মডেলটি ডাউনলোড হয়ে যাবে। ডাউনলোড সম্পূর্ণ হওয়ার আগে আপনার করা অনুরোধগুলি কোনও ফলাফল দেয় না।
এখন আপনি ছবি লেবেল করার জন্য প্রস্তুত।
১. ইনপুট ইমেজ প্রস্তুত করুন
আপনার ছবি থেকে একটিInputImage অবজেক্ট তৈরি করুন। যখন আপনি একটি Bitmap ব্যবহার করেন অথবা যদি আপনি camera2 API ব্যবহার করেন, তাহলে YUV_420_888 media.Image ব্যবহার করেন, যা সম্ভব হলে সুপারিশ করা হয়, তখন ইমেজ লেবেলারটি দ্রুততম চলে। আপনি বিভিন্ন উৎস থেকে একটি InputImage অবজেক্ট তৈরি করতে পারেন, প্রতিটি নীচে ব্যাখ্যা করা হয়েছে।
একটি media.Image ব্যবহার করা হচ্ছে। চিত্র
একটি media.Image অবজেক্ট থেকে একটি InputImage অবজেক্ট তৈরি করতে, যেমন যখন আপনি একটি ডিভাইসের ক্যামেরা থেকে একটি ছবি ক্যাপচার করেন, তখন media.Image অবজেক্ট এবং ছবির ঘূর্ণন InputImage.fromMediaImage() এ পাস করুন।
আপনি যদি CameraX লাইব্রেরি ব্যবহার করেন, তাহলে OnImageCapturedListener এবং ImageAnalysis.Analyzer ক্লাসগুলি আপনার জন্য ঘূর্ণন মান গণনা করবে।
কোটলিন
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
জাভা
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
যদি আপনি এমন কোনও ক্যামেরা লাইব্রেরি ব্যবহার না করেন যা আপনাকে ছবির ঘূর্ণন ডিগ্রী দেয়, তাহলে আপনি ডিভাইসের ঘূর্ণন ডিগ্রী এবং ডিভাইসে ক্যামেরা সেন্সরের ওরিয়েন্টেশন থেকে এটি গণনা করতে পারেন:
কোটলিন
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
জাভা
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
তারপর, media.Image অবজেক্ট এবং ঘূর্ণন ডিগ্রি মান InputImage.fromMediaImage() এ পাস করুন:
কোটলিন
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
একটি ফাইল URI ব্যবহার করা হচ্ছে
একটি ফাইল URI থেকে একটি InputImage অবজেক্ট তৈরি করতে, অ্যাপের প্রসঙ্গটি পাস করুন এবং URI ফাইলটি InputImage.fromFilePath() এ দিন। যখন আপনি ACTION_GET_CONTENT ইন্টেন্ট ব্যবহার করে ব্যবহারকারীকে তাদের গ্যালারি অ্যাপ থেকে একটি ছবি নির্বাচন করতে অনুরোধ করেন তখন এটি কার্যকর।
কোটলিন
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
একটি ByteBuffer বা ByteArray ব্যবহার করা
ByteBuffer অথবা ByteArray থেকে InputImage অবজেক্ট তৈরি করতে, প্রথমে media.Image ইনপুটের জন্য পূর্বে বর্ণিত চিত্রের ঘূর্ণন ডিগ্রি গণনা করুন। তারপর, বাফার বা অ্যারে দিয়ে InputImage অবজেক্ট তৈরি করুন, ছবির উচ্চতা, প্রস্থ, রঙ এনকোডিং ফর্ম্যাট এবং ঘূর্ণন ডিগ্রি সহ:
কোটলিন
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
জাভা
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Bitmap ব্যবহার করা
একটি Bitmap অবজেক্ট থেকে একটি InputImage অবজেক্ট তৈরি করতে, নিম্নলিখিত ঘোষণাটি করুন:
কোটলিন
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
ছবিটি ঘূর্ণন ডিগ্রি সহ একটি Bitmap বস্তু দ্বারা উপস্থাপিত হয়।
২. ইমেজ লেবেলার কনফিগার করুন এবং চালান
একটি ছবিতে অবজেক্ট লেবেল করতে,InputImage অবজেক্টটিকে ImageLabeler এর process পদ্ধতিতে পাস করুন।প্রথমে,
ImageLabelerএর একটি উদাহরণ নিন।আপনি যদি অন-ডিভাইস ইমেজ লেবেলার ব্যবহার করতে চান, তাহলে নিম্নলিখিত ঘোষণাটি করুন:
কোটলিন
// To use default options: val labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS) // Or, to set the minimum confidence required: // val options = ImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = ImageLabeling.getClient(options)
জাভা
// To use default options: ImageLabeler labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS); // Or, to set the minimum confidence required: // ImageLabelerOptions options = // new ImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // ImageLabeler labeler = ImageLabeling.getClient(options);
- তারপর, ছবিটি
process()পদ্ধতিতে পাস করুন:
কোটলিন
labeler.process(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
জাভা
labeler.process(image) .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() { @Override public void onSuccess(List<ImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
৩. লেবেলযুক্ত বস্তু সম্পর্কে তথ্য পান
যদি ইমেজ লেবেলিং অপারেশন সফল হয়,ImageLabel অবজেক্টের একটি তালিকা সাকসেস লিসেনারের কাছে পাঠানো হয়। প্রতিটি ImageLabel অবজেক্ট এমন কিছু উপস্থাপন করে যা ছবিতে লেবেল করা ছিল। বেস মডেলটি 400+ বিভিন্ন লেবেল সমর্থন করে। আপনি প্রতিটি লেবেলের টেক্সট বর্ণনা, মডেল দ্বারা সমর্থিত সমস্ত লেবেলের মধ্যে সূচক এবং ম্যাচের আত্মবিশ্বাস স্কোর পেতে পারেন। উদাহরণস্বরূপ: কোটলিন
for (label in labels) { val text = label.text val confidence = label.confidence val index = label.index }
জাভা
for (ImageLabel label : labels) { String text = label.getText(); float confidence = label.getConfidence(); int index = label.getIndex(); }
রিয়েল-টাইম পারফর্ম্যান্স উন্নত করার টিপস
আপনি যদি রিয়েল-টাইম অ্যাপ্লিকেশনে ছবি লেবেল করতে চান, তাহলে সেরা ফ্রেমরেট অর্জনের জন্য এই নির্দেশিকাগুলি অনুসরণ করুন:
- যদি আপনি
Cameraঅথবাcamera2এপিআই ব্যবহার করেন, তাহলে ইমেজ লেবেলারে থ্রোটল কল আসবে। ইমেজ লেবেলার চলাকালীন যদি নতুন ভিডিও ফ্রেম পাওয়া যায়, তাহলে ফ্রেমটি ফেলে দিন। উদাহরণের জন্য কুইকস্টার্ট স্যাম্পল অ্যাপেVisionProcessorBaseক্লাসটি দেখুন। - যদি আপনি
CameraXAPI ব্যবহার করেন, তাহলে নিশ্চিত করুন যে ব্যাকপ্রেসার কৌশলটি তার ডিফল্ট মানImageAnalysis.STRATEGY_KEEP_ONLY_LATESTতে সেট করা আছে। এটি নিশ্চিত করে যে একবারে বিশ্লেষণের জন্য শুধুমাত্র একটি ছবি সরবরাহ করা হবে। বিশ্লেষক ব্যস্ত থাকাকালীন যদি আরও ছবি তৈরি করা হয়, তাহলে সেগুলি স্বয়ংক্রিয়ভাবে বাদ দেওয়া হবে এবং সরবরাহের জন্য সারিবদ্ধ করা হবে না। ImageProxy.close() কল করে বিশ্লেষণ করা ছবিটি বন্ধ হয়ে গেলে, পরবর্তী সর্বশেষ ছবিটি সরবরাহ করা হবে। - যদি আপনি ইনপুট ছবিতে গ্রাফিক্স ওভারলে করার জন্য ইমেজ লেবেলারের আউটপুট ব্যবহার করেন, তাহলে প্রথমে ML Kit থেকে ফলাফলটি পান, তারপর ইমেজটি রেন্ডার করুন এবং এক ধাপে ওভারলে করুন। এটি প্রতিটি ইনপুট ফ্রেমের জন্য শুধুমাত্র একবার ডিসপ্লে সারফেসে রেন্ডার করে। উদাহরণের জন্য কুইকস্টার্ট নমুনা অ্যাপে
CameraSourcePreviewএবংGraphicOverlayক্লাসগুলি দেখুন। - যদি আপনি Camera2 API ব্যবহার করেন, তাহলে
ImageFormat.YUV_420_888ফর্ম্যাটে ছবি তুলুন। যদি আপনি পুরোনো ক্যামেরা API ব্যবহার করেন, তাহলেImageFormat.NV21ফর্ম্যাটে ছবি তুলুন।