You can use ML Kit to label objects recognized in an image. The default model provided with ML Kit supports 400+ different labels.
Feature | Unbundled | Bundled |
---|---|---|
Implementation | Model is dynamically downloaded via Google Play Services. | Model is statically linked to your at build time. |
App size | About 200 KB size increase. | About 5.7 MB size increase. |
Initialization time | Might have to wait for model to download before first use. | Model is available immediately |
Try it out
- Play around with the sample app to see an example usage of this API.
Before you begin
In your project-level
build.gradle
file, make sure to include Google's Maven repository in both yourbuildscript
andallprojects
sections.Add the dependencies for the ML Kit Android libraries to your module's app-level gradle file, which is usually
app/build.gradle
. Choose one of the following dependencies based on your needs:For bundling the model with your app:
dependencies { // ... // Use this dependency to bundle the model with your app implementation 'com.google.mlkit:image-labeling:17.0.9' }
For using the model in Google Play Services:
dependencies { // ... // Use this dependency to use the dynamically downloaded model in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-image-labeling:16.0.8' }
If you choose to use the model in Google Play Services, you can configure your app to automatically download the model to the device after your app is installed from the Play Store. To do so, add the following declaration to your app's
AndroidManifest.xml
file:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="ica" > <!-- To use multiple models: android:value="ica,model2,model3" --> </application>
You can also explicitly check the model availability and request download through Google Play services ModuleInstallClient API.
If you don't enable install-time model downloads or request explicit download, the model is downloaded the first time you run the labeler. Requests you make before the download has completed produce no results.
Now you are ready to label images.
1. Prepare the input image
Create anInputImage
object from your image.
The image labeler runs fastest when you use a Bitmap
or, if you use the
camera2 API, a YUV_420_888 media.Image
, which are recommended when
possible.
You can create an InputImage
object from different sources, each is explained below.
Using a media.Image
To create an InputImage
object from a media.Image
object, such as when you capture an image from a
device's camera, pass the media.Image
object and the image's
rotation to InputImage.fromMediaImage()
.
If you use the
CameraX library, the OnImageCapturedListener
and
ImageAnalysis.Analyzer
classes calculate the rotation value
for you.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
If you don't use a camera library that gives you the image's rotation degree, you can calculate it from the device's rotation degree and the orientation of camera sensor in the device:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Then, pass the media.Image
object and the
rotation degree value to InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Using a file URI
To create an InputImage
object from a file URI, pass the app context and file URI to
InputImage.fromFilePath()
. This is useful when you
use an ACTION_GET_CONTENT
intent to prompt the user to select
an image from their gallery app.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Using a ByteBuffer
or ByteArray
To create an InputImage
object from a ByteBuffer
or a ByteArray
, first calculate the image
rotation degree as previously described for media.Image
input.
Then, create the InputImage
object with the buffer or array, together with image's
height, width, color encoding format, and rotation degree:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Using a Bitmap
To create an InputImage
object from a Bitmap
object, make the following declaration:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
The image is represented by a Bitmap
object together with rotation degrees.
2. Configure and run the image labeler
To label objects in an image, pass theInputImage
object to the
ImageLabeler
's process
method.
First, get an instance of
ImageLabeler
.If you want to use the on-device image labeler, make the following declaration:
Kotlin
// To use default options: val labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS) // Or, to set the minimum confidence required: // val options = ImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = ImageLabeling.getClient(options)
Java
// To use default options: ImageLabeler labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS); // Or, to set the minimum confidence required: // ImageLabelerOptions options = // new ImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // ImageLabeler labeler = ImageLabeling.getClient(options);
- Then, pass the image to the
process()
method:
Kotlin
labeler.process(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
labeler.process(image) .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() { @Override public void onSuccess(List<ImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
3. Get information about labeled objects
If the image labeling operation succeeds, a list ofImageLabel
objects is passed to the success listener. Each
ImageLabel
object represents something that was labeled in the image. The base
model supports 400+ different labels.
You can get each label's text description, index among all labels supported by
the model, and the confidence score of the match. For example:
Kotlin
for (label in labels) { val text = label.text val confidence = label.confidence val index = label.index }
Java
for (ImageLabel label : labels) { String text = label.getText(); float confidence = label.getConfidence(); int index = label.getIndex(); }
Tips to improve real-time performance
If you want to label images in a real-time application, follow these guidelines to achieve the best framerates:
- If you use the
Camera
orcamera2
API, throttle calls to the image labeler. If a new video frame becomes available while the image labeler is running, drop the frame. See theVisionProcessorBase
class in the quickstart sample app for an example. - If you use the
CameraX
API, be sure that backpressure strategy is set to its default valueImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. This guarantees only one image will be delivered for analysis at a time. If more images are produced when the analyzer is busy, they will be dropped automatically and not queued for delivery. Once the image being analyzed is closed by calling ImageProxy.close(), the next latest image will be delivered. - If you use the output of the image labeler to overlay graphics on
the input image, first get the result from ML Kit, then render the image
and overlay in a single step. This renders to the display surface
only once for each input frame. See the
CameraSourcePreview
andGraphicOverlay
classes in the quickstart sample app for an example. - If you use the Camera2 API, capture images in
ImageFormat.YUV_420_888
format. If you use the older Camera API, capture images inImageFormat.NV21
format.