Etiqueta imágenes con ML Kit en Android

Puedes usar ML Kit para etiquetar los objetos reconocidos en una imagen. El modelo predeterminado que se proporciona con ML Kit admite más de 400 etiquetas diferentes.

FunciónSin agruparRed de Búsqueda y Red de Display
ImplementaciónEl modelo se descarga de forma dinámica a través de los Servicios de Google Play.El modelo está vinculado de forma estática a tu código en el tiempo de compilación.
Tamaño de la appAumenta el tamaño en aproximadamente 200 KB.Aumenta el tamaño en aproximadamente 5.7 MB.
Hora de inicializaciónEs posible que debas esperar a que se descargue el modelo antes de usarlo por primera vez.El modelo está disponible de inmediato

Probar

Antes de comenzar

  1. En tu archivo build.gradle de nivel de proyecto, asegúrate de incluir el repositorio Maven de Google en las secciones buildscript y allprojects.

  2. Agrega las dependencias para las bibliotecas de Android de ML Kit al archivo Gradle a nivel de la app de tu módulo, que suele ser app/build.gradle. Elige una de las siguientes dependencias según tus necesidades:

    Para empaquetar el modelo con tu app, sigue estos pasos:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:image-labeling:17.0.9'
    }
    

    Para usar el modelo en los Servicios de Google Play, haz lo siguiente:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-image-labeling:16.0.8'
    }
    
  3. Si decides usar el modelo en los Servicios de Google Play, puedes configurar tu app para que descargue automáticamente el modelo en el dispositivo después de instalarla desde Play Store. Para ello, agrega la siguiente declaración al archivo AndroidManifest.xml de tu app:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ica" >
          <!-- To use multiple models: android:value="ica,model2,model3" -->
    </application>
    

    También puedes verificar de forma explícita la disponibilidad del modelo y solicitar la descarga a través de la API de ModuleInstallClient de los Servicios de Google Play.

    Si no habilitas las descargas de modelos en el momento de la instalación ni solicitas una descarga explícita, el modelo se descargará la primera vez que ejecutes el etiquetador. Las solicitudes que realices antes de que se complete la descarga no generarán ningún resultado.

Ya está todo listo para etiquetar imágenes.

1. Prepara la imagen de entrada

Crea un objeto InputImage a partir de tu imagen. El etiquetador de imágenes se ejecuta más rápido cuando usas un Bitmap o, si usas la API de Camera2, un media.Image de YUV_420_888, que se recomienda cuando es posible.

Puedes crear un objeto InputImage a partir de diferentes fuentes, que se explican a continuación.

Usa un media.Image

Para crear un objeto InputImage a partir de un objeto media.Image, como cuando se captura una imagen con la cámara de un dispositivo, pasa el objeto media.Image y la rotación de la imagen a InputImage.fromMediaImage().

Si usas la biblioteca CameraX, las clases OnImageCapturedListener y ImageAnalysis.Analyzer calculan el valor de rotación por ti.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Si no usas una biblioteca de cámaras que te proporcione el grado de rotación de la imagen, puedes calcularla a partir de la rotación del dispositivo y la orientación del sensor de la cámara en el dispositivo:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Luego, pasa el objeto media.Image y el valor de grado de rotación a InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Usa un URI de archivo

Para crear un objeto InputImage a partir de un URI de archivo, pasa el contexto de la app y el URI del archivo a InputImage.fromFilePath(). Esto es útil cuando usas un intent ACTION_GET_CONTENT para solicitarle al usuario que seleccione una imagen de su app de galería.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Usa ByteBuffer o ByteArray

Para crear un objeto InputImage a partir de un ByteBuffer o un ByteArray, primero calcula el grado de rotación de la imagen como se describió anteriormente en la entrada media.Image. Luego, crea el objeto InputImage con el búfer o el array, junto con la altura, el ancho, el formato de codificación de color y el grado de rotación de la imagen:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Usa un Bitmap

Para crear un objeto InputImage a partir de un objeto Bitmap, realiza la siguiente declaración:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

La imagen está representada por un objeto Bitmap junto con los grados de rotación.

2. Configura y ejecuta el etiquetador de imágenes

Para etiquetar objetos de una imagen, pasa el objeto InputImage al método process de ImageLabeler.

  1. Primero, obtén una instancia de ImageLabeler.

    Si quieres usar el etiquetador de imágenes integrado en el dispositivo, haz la siguiente declaración:

Kotlin

// To use default options:
val labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS)

// Or, to set the minimum confidence required:
// val options = ImageLabelerOptions.Builder()
//     .setConfidenceThreshold(0.7f)
//     .build()
// val labeler = ImageLabeling.getClient(options)

Java

// To use default options:
ImageLabeler labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS);

// Or, to set the minimum confidence required:
// ImageLabelerOptions options =
//     new ImageLabelerOptions.Builder()
//         .setConfidenceThreshold(0.7f)
//         .build();
// ImageLabeler labeler = ImageLabeling.getClient(options);
  1. Por último, pasa la imagen al método process():

Kotlin

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

3. Obtén información sobre los objetos etiquetados

Si la operación de etiquetado de imágenes se ejecuta correctamente, se pasará una lista de objetos ImageLabel al objeto de escucha que detecta el resultado correcto. Cada objeto ImageLabel representa un elemento etiquetado en la imagen. El modelo base admite más de 400 etiquetas diferentes. Puedes obtener la descripción del texto de cada etiqueta, el índice entre todas las etiquetas que admite el modelo y la puntuación de confianza de la coincidencia. Por ejemplo:

Kotlin

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

Java

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

Sugerencias para mejorar el rendimiento en tiempo real

Si quieres etiquetar imágenes en una aplicación en tiempo real, sigue estos lineamientos para lograr la mejor velocidad de fotogramas:

  • Si usas la API de Camera o camera2, limita las llamadas al etiquetador de imágenes. Si surge un fotograma de video nuevo mientras se ejecuta el etiquetador de imágenes, ignora ese fotograma. Consulta la clase VisionProcessorBase de la app de ejemplo de la guía de inicio rápido para ver un ejemplo.
  • Si usas la API de CameraX, asegúrate de que la estrategia de contrapresión esté configurada en su valor predeterminado ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Esto garantiza que solo se entregue una imagen para el análisis a la vez. Si se producen más imágenes cuando el analizador está ocupado, se descartarán automáticamente y no se pondrán en cola para la publicación. Una vez que se cierre la imagen que se está analizando llamando a ImageProxy.close(), se entregará la siguiente imagen más reciente.
  • Si usas la salida del etiquetador de imágenes para superponer gráficos en la imagen de entrada, primero debes obtener el resultado del Kit de AA y, luego, procesar la imagen y realizar la superposición en un solo paso. Esto se renderiza en la superficie de visualización solo una vez por cada fotograma de entrada. Consulta las clases CameraSourcePreview y GraphicOverlay en la app de ejemplo de la guía de inicio rápido para ver un ejemplo.
  • Si usas la API de Camera2, captura imágenes en formato ImageFormat.YUV_420_888. Si usas la API de Camera más antigua, captura imágenes en formato ImageFormat.NV21.