Memberikan label pada gambar dengan ML Kit di Android

Anda dapat menggunakan ML Kit untuk memberi label pada objek yang dikenali dalam gambar. Model default yang disediakan dengan ML Kit mendukung 400+ label berbeda.

FiturTidak DipaketkanPaket
PenerapanModel didownload secara dinamis melalui Layanan Google Play.Model ditautkan secara statis ke waktu build Anda.
Ukuran aplikasiUkuran meningkat sekitar 200 KB.Peningkatan ukuran sekitar 5,7 MB.
Waktu inisialisasiMungkin harus menunggu model didownload sebelum digunakan pertama kali.Model akan segera tersedia

Cobalah

Sebelum memulai

  1. Dalam file build.gradle level project, pastikan Anda menyertakan ID Repositori Maven di bagian buildscript dan allprojects.

  2. Tambahkan dependensi untuk library Android ML Kit ke modul Anda gradle level aplikasi, yang biasanya adalah app/build.gradle. Pilih salah satu dependensi berikut berdasarkan kebutuhan Anda:

    Untuk memaketkan model dengan aplikasi Anda:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:image-labeling:17.0.9'
    }
    

    Untuk menggunakan model di Layanan Google Play:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-image-labeling:16.0.8'
    }
    
  3. Jika Anda memilih untuk menggunakan model ini di Layanan Google Play, Anda dapat mengonfigurasi aplikasi Anda untuk mengunduh model secara otomatis ke perangkat setelah aplikasi diinstal dari Play Store. Untuk melakukannya, tambahkan deklarasi berikut ke file AndroidManifest.xml aplikasi Anda:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ica" >
          <!-- To use multiple models: android:value="ica,model2,model3" -->
    </application>
    

    Anda juga bisa secara eksplisit memeriksa ketersediaan model dan meminta download melalui ModuleInstallClient API layanan Google Play.

    Jika Anda tidak mengaktifkan download model waktu instal atau meminta download eksplisit, model akan didownload saat pertama kali Anda menjalankan pemberi label. Permintaan yang Anda buat sebelum pengunduhan selesai, tidak akan memberikan hasil.

Sekarang Anda siap memberi label pada gambar.

1. Menyiapkan gambar input

Buat objek InputImage dari gambar Anda. Pemberi label pada gambar berfungsi optimal jika Anda menggunakan Bitmap, atau jika Anda menggunakan camera2 API, yaitu media.Image YUV_420_888, yang direkomendasikan saat sebaik mungkin.

Anda dapat membuat InputImage dari berbagai sumber, masing-masing akan dijelaskan di bawah ini.

Menggunakan media.Image

Untuk membuat InputImage dari objek media.Image, seperti saat Anda mengambil gambar dari kamera perangkat, teruskan objek media.Image dan objek rotasi ke InputImage.fromMediaImage().

Jika Anda menggunakan library CameraX, OnImageCapturedListener dan Class ImageAnalysis.Analyzer menghitung nilai rotasi keamanan untuk Anda.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Jika Anda tidak menggunakan pustaka kamera yang memberi derajat rotasi gambar, Anda bisa menghitungnya dari derajat rotasi perangkat dan orientasi kamera sensor di perangkat:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Lalu, teruskan objek media.Image dan nilai derajat rotasi ke InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Menggunakan URI file

Untuk membuat InputImage dari URI file, teruskan konteks aplikasi dan URI file ke InputImage.fromFilePath(). Hal ini berguna ketika Anda gunakan intent ACTION_GET_CONTENT untuk meminta pengguna memilih gambar dari aplikasi galeri mereka.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Menggunakan ByteBuffer atau ByteArray

Untuk membuat InputImage dari ByteBuffer atau ByteArray, hitung gambar terlebih dahulu derajat rotasi seperti yang dijelaskan sebelumnya untuk input media.Image. Lalu, buat objek InputImage dengan buffer atau array, beserta elemen tinggi, lebar, format encoding warna, dan derajat rotasi:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Menggunakan Bitmap

Untuk membuat InputImage dari objek Bitmap, buat deklarasi berikut:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Gambar direpresentasikan oleh objek Bitmap bersama dengan derajat rotasi.

2. Mengonfigurasi dan menjalankan pemberi label pada gambar

Untuk memberi label pada objek dalam gambar, teruskan objek InputImage ke elemen Metode process ImageLabeler.

  1. Pertama, dapatkan instance ImageLabeler

    Jika Anda ingin menggunakan pemberi label gambar di perangkat, lakukan hal berikut pernyataan:

Kotlin

// To use default options:
val labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS)

// Or, to set the minimum confidence required:
// val options = ImageLabelerOptions.Builder()
//     .setConfidenceThreshold(0.7f)
//     .build()
// val labeler = ImageLabeling.getClient(options)

Java

// To use default options:
ImageLabeler labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS);

// Or, to set the minimum confidence required:
// ImageLabelerOptions options =
//     new ImageLabelerOptions.Builder()
//         .setConfidenceThreshold(0.7f)
//         .build();
// ImageLabeler labeler = ImageLabeling.getClient(options);
  1. Lalu, teruskan gambar ke metode process():

Kotlin

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

3. Mendapatkan informasi tentang objek berlabel

Jika operasi pelabelan pada gambar berhasil, daftar Objek ImageLabel diteruskan ke pemroses peristiwa sukses. Masing-masing Objek ImageLabel mewakili sesuatu yang diberi label dalam gambar. Basis mendukung 400+ label berbeda. Anda dapat memperoleh deskripsi teks setiap label, indeks di antara semua label yang didukung oleh model, dan skor keyakinan kecocokannya. Contoh:

Kotlin

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

Java

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

Tips untuk meningkatkan performa real-time

Jika Anda ingin memberikan label pada gambar dalam aplikasi real-time, ikuti panduan untuk mencapai kecepatan frame terbaik:

  • Jika Anda menggunakan Camera atau camera2 API, men-throttle panggilan ke pemberi label gambar. Jika video baru frame menjadi tersedia saat pemberi label gambar sedang berjalan, hapus bingkai. Lihat VisionProcessorBase dalam aplikasi contoh panduan memulai untuk digunakan sebagai contoh.
  • Jika Anda menggunakan CameraX API, pastikan strategi tekanan balik ditetapkan ke nilai defaultnya ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Hal ini menjamin hanya satu gambar yang akan dikirimkan untuk analisis pada satu waktu. Jika lebih banyak gambar yang dihasilkan ketika penganalisis sedang sibuk, mereka akan dibuang secara otomatis dan tidak diantrekan pengiriman. Setelah gambar yang dianalisis ditutup dengan memanggil ImageProxy.close(), gambar terbaru berikutnya akan dikirim.
  • Jika Anda menggunakan output pemberi label gambar untuk menempatkan grafis pada gambar input, pertama-tama dapatkan hasilnya dari ML Kit, lalu render gambar dan overlay dalam satu langkah. Tindakan ini merender ke permukaan tampilan hanya sekali untuk setiap {i>input frame<i}. Lihat CameraSourcePreview dan GraphicOverlay dalam aplikasi contoh panduan memulai sebagai contoh.
  • Jika Anda menggunakan Camera2 API, ambil gambar dengan Format ImageFormat.YUV_420_888. Jika Anda menggunakan Camera API versi lama, ambil gambar dengan Format ImageFormat.NV21.