在 Android 上使用 ML Kit 為圖片加上標籤

您可以使用 ML Kit 為圖片中辨識到的物件加上標籤。ML Kit 提供的預設模型支援 400 多種不同的標籤。

功能未綁定組合
導入作業模型會透過 Google Play 服務動態下載。模型會在建構時靜態連結至您的模型。
應用程式大小大小增加約 200 KB。大小增加約 5.7 MB。
初始化時間首次使用前可能需要等待模型下載完成。模型會立即提供

立即試用

事前準備

  1. 在專案層級的 build.gradle 檔案中,請務必在 buildscriptallprojects 區段中加入 Google 的 Maven 存放區。

  2. 將 ML Kit Android 程式庫的依附元件新增至模組的應用程式層級 Gradle 檔案,通常為 app/build.gradle。請依據需求選擇下列其中一個依附元件:

    如要將模型與應用程式組合:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:image-labeling:17.0.9'
    }
    

    如要在 Google Play 服務中使用模型:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-image-labeling:16.0.8'
    }
    
  3. 如果選擇在 Google Play 服務中使用模型,您可以設定應用程式,在從 Play 商店安裝後自動將模型下載至裝置。如要這麼做,請在應用程式的 AndroidManifest.xml 檔案中加入以下宣告:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ica" >
          <!-- To use multiple models: android:value="ica,model2,model3" -->
    </application>
    

    您也可以透過 Google Play 服務 ModuleInstallClient API,明確檢查模型可用性並要求下載。

    如果未啟用安裝時模型下載功能或要求明確下載,模型會在您首次執行標籤器時下載。在下載完成前提出的要求不會產生任何結果。

現在可以開始標記圖片。

1. 準備輸入圖片

從圖片建立 InputImage 物件。 使用 Bitmap 時,圖片標籤器執行速度最快。如果使用 camera2 API,建議使用 YUV_420_888 media.Image

您可以從不同來源建立 InputImage 物件,詳情請參閱下文。

使用 media.Image

如要從 media.Image 物件建立 InputImage 物件 (例如從裝置的相機擷取圖片時),請將 media.Image 物件和圖片的旋轉角度傳遞至 InputImage.fromMediaImage()

如果您使用 CameraX 程式庫,OnImageCapturedListenerImageAnalysis.Analyzer 類別會為您計算旋轉值。

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

如果您使用的相機程式庫未提供圖片的旋轉角度,可以根據裝置的旋轉角度和裝置中相機感應器的方向計算:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

接著,將 media.Image 物件和旋轉角度值傳遞至 InputImage.fromMediaImage()

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

使用檔案 URI

如要從檔案 URI 建立 InputImage 物件,請將應用程式內容和檔案 URI 傳遞至 InputImage.fromFilePath()。當您使用 ACTION_GET_CONTENT 意圖提示使用者從相簿應用程式選取圖片時,這項功能就非常實用。

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

使用 ByteBufferByteArray

如要從 ByteBufferByteArray 建立 InputImage 物件,請先計算圖片旋轉角度,如先前所述的 media.Image 輸入內容。接著,使用緩衝區或陣列建立 InputImage 物件,並提供圖片的高度、寬度、色彩編碼格式和旋轉角度:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

使用 Bitmap

如要從 Bitmap 物件建立 InputImage 物件,請進行下列宣告:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

圖片會以 Bitmap 物件和旋轉角度表示。

2. 設定並執行圖片標籤器

如要為圖片中的物件加上標籤,請將 InputImage 物件傳遞至 ImageLabelerprocess 方法。

  1. 首先,請取得 ImageLabeler 的例項。

    如要使用裝置端圖片標籤器,請進行下列宣告:

Kotlin

// To use default options:
val labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS)

// Or, to set the minimum confidence required:
// val options = ImageLabelerOptions.Builder()
//     .setConfidenceThreshold(0.7f)
//     .build()
// val labeler = ImageLabeling.getClient(options)

Java

// To use default options:
ImageLabeler labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS);

// Or, to set the minimum confidence required:
// ImageLabelerOptions options =
//     new ImageLabelerOptions.Builder()
//         .setConfidenceThreshold(0.7f)
//         .build();
// ImageLabeler labeler = ImageLabeling.getClient(options);
  1. 接著,將圖片傳遞至 process() 方法:

Kotlin

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

3. 取得標示物件的相關資訊

如果圖片標籤作業成功,系統會將 ImageLabel 物件清單傳遞至成功監聽器。每個 ImageLabel 物件代表圖片中標記的項目。基礎模型支援 400 多種不同的標籤。您可以取得每個標籤的文字說明、模型支援的所有標籤中的索引,以及比對的信心分數。例如:

Kotlin

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

Java

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

提升即時成效的訣竅

如要在即時應用程式中標記圖片,請遵循下列指南,盡可能提高影格速率:

  • 如果您使用 Cameracamera2 API,請節制對圖片標籤器的呼叫次數。如果圖片標籤器執行時有新的影片影格可用,請捨棄該影格。如需範例,請參閱快速入門範例應用程式中的 VisionProcessorBase 類別。
  • 如果您使用 CameraX API,請務必將背壓策略設為預設值 ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST。這可確保系統一次只會傳送一張圖片進行分析。如果分析器忙碌時產生更多圖片,系統會自動捨棄這些圖片,不會排隊等待傳送。呼叫 ImageProxy.close() 關閉要分析的圖片後,系統就會傳送下一個最新圖片。
  • 如果使用圖片標籤工具的輸出內容,在輸入圖片上疊加圖像,請先從 ML Kit 取得結果,然後在單一步驟中算繪圖片並疊加圖像。每個輸入影格只會轉譯到顯示介面一次。如需範例,請參閱快速入門範例應用程式中的 CameraSourcePreview GraphicOverlay 類別。
  • 如果您使用 Camera2 API,請以 ImageFormat.YUV_420_888 格式擷取圖片。如果使用舊版 Camera API,請以 ImageFormat.NV21 格式擷取圖片。