Mit ML Kit können Sie Objekte, die auf einem Bild erkannt wurden, mit Labels versehen. Das Standardmodell, das mit ML Kit bereitgestellt wird, unterstützt mehr als 400 verschiedene Labels.
Funktion | Nicht gebündelt | Gebündelt |
---|---|---|
Implementierung | Das Modell wird dynamisch über die Google Play-Dienste heruntergeladen. | Das Modell wird statisch mit Ihrer Anwendung verknüpft. |
App-Größe | Die Größe nimmt um etwa 200 KB zu. | Die Größe hat sich um etwa 5,7 MB erhöht. |
Initialisierungszeit | Möglicherweise müssen Sie warten, bis das Modell heruntergeladen wurde, bevor Sie es zum ersten Mal verwenden können. | Modell ist sofort verfügbar |
Jetzt ausprobieren
- Beispiel-App ausprobieren, um ein Beispiel für die Verwendung dieser API zu sehen.
Hinweis
In die Datei
build.gradle
auf Projektebene muss das Maven-Repository von Google in die Abschnittebuildscript
undallprojects
aufgenommen werden.Fügen Sie die Abhängigkeiten für die ML Kit Android-Bibliotheken der Gradle-Datei auf App-Ebene Ihres Moduls hinzu. Diese Datei ist in der Regel
app/build.gradle
. Wählen Sie je nach Bedarf eine der folgenden Abhängigkeiten aus:Für das Bündeln des Modells mit Ihrer App:
dependencies { // ... // Use this dependency to bundle the model with your app implementation 'com.google.mlkit:image-labeling:17.0.9' }
Für die Verwendung des Modells in den Google Play-Diensten:
dependencies { // ... // Use this dependency to use the dynamically downloaded model in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-image-labeling:16.0.8' }
Wenn Sie das Modell in Google Play-Diensten verwenden, können Sie Ihre App so konfigurieren, dass das Modell automatisch auf das Gerät heruntergeladen wird, nachdem Ihre App aus dem Play Store installiert wurde. Fügen Sie dazu der Datei
AndroidManifest.xml
Ihrer App die folgende Deklaration hinzu:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="ica" > <!-- To use multiple models: android:value="ica,model2,model3" --> </application>
Sie können die Modellverfügbarkeit auch explizit prüfen und den Download über die ModuleInstallClient API der Google Play-Dienste anfordern.
Wenn Sie keine Modell-Downloads zur Installationszeit aktivieren oder keinen expliziten Download anfordern, wird das Modell beim ersten Ausführen des Labelers heruntergeladen. Anfragen, die Sie vor Abschluss des Downloads stellen, liefern keine Ergebnisse.
Jetzt können Sie Bilder labeln.
1. Eingabebild vorbereiten
Erstellen Sie einInputImage
-Objekt aus Ihrem Bild.
Die Bildkennzeichnung läuft am schnellsten, wenn Sie ein Bitmap
oder, falls Sie die Camera2 API verwenden, ein YUV_420_888-media.Image
verwenden. Diese werden nach Möglichkeit empfohlen.
Sie können ein InputImage
-Objekt aus verschiedenen Quellen erstellen. Die einzelnen Quellen werden unten beschrieben.
Mit einem media.Image
Wenn Sie ein InputImage
-Objekt aus einem media.Image
-Objekt erstellen möchten, z. B. wenn Sie ein Bild mit der Kamera eines Geräts aufnehmen, übergeben Sie das media.Image
-Objekt und die Drehung des Bildes an InputImage.fromMediaImage()
.
Wenn Sie die
CameraX-Bibliothek verwenden, berechnen die Klassen OnImageCapturedListener
und ImageAnalysis.Analyzer
den Rotationswert für Sie.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Wenn Sie keine Kamerabibliothek verwenden, die den Drehwinkel des Bildes angibt, können Sie ihn aus dem Drehwinkel des Geräts und der Ausrichtung des Kamerasensors im Gerät berechnen:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Übergeben Sie dann das media.Image
-Objekt und den Wert für den Drehwinkel an InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Datei-URI verwenden
Wenn Sie ein InputImage
-Objekt aus einem Datei-URI erstellen möchten, übergeben Sie den App-Kontext und den Datei-URI an InputImage.fromFilePath()
. Das ist nützlich, wenn Sie mit einem ACTION_GET_CONTENT
-Intent den Nutzer auffordern, ein Bild aus seiner Galerie-App auszuwählen.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
ByteBuffer
oder ByteArray
verwenden
Wenn Sie ein InputImage
-Objekt aus einem ByteBuffer
oder einem ByteArray
erstellen möchten, berechnen Sie zuerst den Bildrotationsgrad wie zuvor für die media.Image
-Eingabe beschrieben.
Erstellen Sie dann das InputImage
-Objekt mit dem Puffer oder Array sowie der Höhe, Breite, dem Farbcodierungsformat und dem Rotationsgrad des Bildes:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Mit einem Bitmap
So erstellen Sie ein InputImage
-Objekt aus einem Bitmap
-Objekt:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Das Bild wird durch ein Bitmap
-Objekt zusammen mit den Rotationsgraden dargestellt.
2. Bildlabeler konfigurieren und ausführen
Wenn Sie Objekte in einem Bild mit Labels versehen möchten, übergeben Sie dasInputImage
-Objekt an die process
-Methode von ImageLabeler
.
Rufen Sie zuerst eine Instanz von
ImageLabeler
ab.Wenn Sie den On-Device-Bildlabeler verwenden möchten, müssen Sie die folgende Deklaration vornehmen:
Kotlin
// To use default options: val labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS) // Or, to set the minimum confidence required: // val options = ImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = ImageLabeling.getClient(options)
Java
// To use default options: ImageLabeler labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS); // Or, to set the minimum confidence required: // ImageLabelerOptions options = // new ImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // ImageLabeler labeler = ImageLabeling.getClient(options);
- Übergeben Sie das Bild dann an die
process()
-Methode:
Kotlin
labeler.process(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
labeler.process(image) .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() { @Override public void onSuccess(List<ImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
3. Informationen zu gelabelten Objekten abrufen
Wenn die Bildlabeling-Operation erfolgreich ist, wird eine Liste vonImageLabel
-Objekten an den Erfolgs-Listener übergeben. Jedes ImageLabel
-Objekt stellt etwas dar, das im Bild gekennzeichnet wurde. Das Basismodell unterstützt über 400 verschiedene Labels.
Sie können die Textbeschreibung, den Index unter allen vom Modell unterstützten Labels und den Konfidenzwert der Übereinstimmung für jedes Label abrufen. Beispiel:
Kotlin
for (label in labels) { val text = label.text val confidence = label.confidence val index = label.index }
Java
for (ImageLabel label : labels) { String text = label.getText(); float confidence = label.getConfidence(); int index = label.getIndex(); }
Tipps zur Verbesserung der Echtzeitleistung
Wenn Sie Bilder in einer Echtzeitanwendung labeln möchten, sollten Sie die folgenden Richtlinien beachten, um die besten Framerates zu erzielen:
- Wenn Sie die API
Camera
odercamera2
verwenden, drosseln Sie die Aufrufe des Bildkennzeichners. Wenn ein neuer Videoframes verfügbar wird, während das Bildlabeling ausgeführt wird, verwerfen Sie den Frame. Ein Beispiel finden Sie in der KlasseVisionProcessorBase
in der Beispiel-App für die Kurzanleitung. - Wenn Sie die
CameraX
API verwenden, muss die Backpressure-Strategie auf den StandardwertImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
festgelegt sein. So wird sichergestellt, dass jeweils nur ein Bild zur Analyse bereitgestellt wird. Wenn mehr Bilder erstellt werden, während der Analyzer beschäftigt ist, werden sie automatisch verworfen und nicht für die Übermittlung in die Warteschlange gestellt. Sobald das analysierte Bild durch Aufrufen von ImageProxy.close() geschlossen wird, wird das nächste aktuelle Bild bereitgestellt. - Wenn Sie die Ausgabe des Bildkennzeichners verwenden, um Grafiken auf das Eingabebild zu legen, rufen Sie zuerst das Ergebnis von ML Kit ab und rendern Sie dann das Bild und das Overlay in einem einzigen Schritt. Das Bild wird für jeden Eingabe-Frame nur einmal auf der Displayoberfläche gerendert. Ein Beispiel finden Sie in der Beispiel-App für die Kurzanleitung in den Klassen
CameraSourcePreview
undGraphicOverlay
. - Wenn Sie die Camera2 API verwenden, nehmen Sie Bilder im
ImageFormat.YUV_420_888
-Format auf. Wenn Sie die ältere Camera API verwenden, nehmen Sie Bilder imImageFormat.NV21
-Format auf.