Etichetta le immagini con ML Kit su Android

Puoi utilizzare ML Kit per etichettare gli oggetti riconosciuti in un'immagine. Il modello predefinito fornito con ML Kit supporta oltre 400 etichette diverse.

FunzionalitàSeparatoIn bundle
ImplementazioneIl modello viene scaricato dinamicamente tramite Google Play Services.Il modello è collegato in modo statico al tuo modello al momento della compilazione.
Dimensioni appAumento delle dimensioni di circa 200 KB.Aumento delle dimensioni di circa 5,7 MB.
Tempo di inizializzazionePotresti dover attendere il download del modello prima del primo utilizzo.Il modello è disponibile immediatamente

Prova

  • Prova l'app di esempio per vedere un esempio di utilizzo di questa API.

Prima di iniziare

  1. Nel file build.gradle a livello di progetto, assicurati di includere il repository Maven di Google sia nelle sezioni buildscript che allprojects.

  2. Aggiungi le dipendenze per le librerie Android di ML Kit al file Gradle a livello di app del tuo modulo, che in genere è app/build.gradle. Scegli una delle seguenti dipendenze in base alle tue esigenze:

    Per raggruppare il modello con l'app:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:image-labeling:17.0.9'
    }
    

    Per utilizzare il modello in Google Play Services:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-image-labeling:16.0.8'
    }
    
  3. Se scegli di utilizzare il modello in Google Play Services, puoi configurare la tua app in modo che scarichi automaticamente il modello sul dispositivo dopo l'installazione dall'app Play Store. Per farlo, aggiungi la seguente dichiarazione al file AndroidManifest.xml della tua app:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ica" >
          <!-- To use multiple models: android:value="ica,model2,model3" -->
    </application>
    

    Puoi anche controllare esplicitamente la disponibilità del modello e richiedere il download tramite l'API ModuleInstallClient di Google Play Services.

    Se non attivi i download dei modelli al momento dell'installazione o richiedi il download esplicito, il modello viene scaricato la prima volta che esegui l'etichettatore. Le richieste effettuate prima del completamento del download non producono risultati.

Ora puoi etichettare le immagini.

1. Prepara l'immagine di input

Crea un oggetto InputImage dalla tua immagine. L'etichettatore di immagini funziona più velocemente se utilizzi un Bitmap o, se utilizzi l'API camera2, un media.Image YUV_420_888, che sono consigliati se possibile.

Puoi creare un oggetto InputImage da diverse origini, ognuna delle quali è descritta di seguito.

Utilizzo di un media.Image

Per creare un oggetto InputImage da un oggetto media.Image, ad esempio quando acquisisci un'immagine dalla fotocamera di un dispositivo, passa l'oggetto media.Image e la rotazione dell'immagine a InputImage.fromMediaImage().

Se utilizzi la libreria CameraX, le classi OnImageCapturedListener e ImageAnalysis.Analyzer calcolano il valore di rotazione per te.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Se non utilizzi una libreria della fotocamera che ti fornisca il grado di rotazione dell'immagine, puoi calcolarlo dal grado di rotazione del dispositivo e dall'orientamento del sensore della fotocamera al suo interno:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Poi, passa l'oggetto media.Image e il valore del grado di rotazione a InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Utilizzo di un URI file

Per creare un oggetto InputImage da un URI file, passa il contesto dell'app e l'URI file a InputImage.fromFilePath(). Questa operazione è utile quando utilizzi un'intenzione ACTION_GET_CONTENT per chiedere all'utente di selezionare un'immagine dalla sua app Galleria.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Utilizzo di un ByteBuffer o ByteArray

Per creare un oggetto InputImage da un ByteBuffer o un ByteArray, calcola prima il grado di rotazione dell'immagine come descritto in precedenza per l'input media.Image. Quindi, crea l'oggetto InputImage con il buffer o l'array, insieme all'altezza, alla larghezza, al formato di codifica dei colori e al grado di rotazione dell'immagine:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Utilizzo di un Bitmap

Per creare un oggetto InputImage da un oggetto Bitmap, esegui la seguente dichiarazione:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

L'immagine è rappresentata da un oggetto Bitmap insieme ai gradi di rotazione.

2. Configura ed esegui l'etichettatore di immagini

Per etichettare gli oggetti in un'immagine, passa l'oggetto InputImage al metodo process di ImageLabeler.

  1. Innanzitutto, ottieni un'istanza di ImageLabeler.

    Se vuoi utilizzare l'etichettatore di immagini sul dispositivo, effettua la seguente dichiarazione:

Kotlin

// To use default options:
val labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS)

// Or, to set the minimum confidence required:
// val options = ImageLabelerOptions.Builder()
//     .setConfidenceThreshold(0.7f)
//     .build()
// val labeler = ImageLabeling.getClient(options)

Java

// To use default options:
ImageLabeler labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS);

// Or, to set the minimum confidence required:
// ImageLabelerOptions options =
//     new ImageLabelerOptions.Builder()
//         .setConfidenceThreshold(0.7f)
//         .build();
// ImageLabeler labeler = ImageLabeling.getClient(options);
  1. Quindi, passa l'immagine al metodo process():

Kotlin

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

3. Ricevere informazioni sugli oggetti etichettati

Se l'operazione di etichettatura delle immagini va a buon fine, un elenco di oggetti ImageLabel viene passato all'ascoltatore di eventi di successo. Ogni oggetto ImageLabel rappresenta un elemento etichettato nell'immagine. Il modello di base supporta oltre 400 etichette diverse. Puoi ottenere la descrizione testuale di ogni etichetta, l'indice tra tutte le etichette supportate dal modello e il punteggio di affidabilità della corrispondenza. Ad esempio:

Kotlin

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

Java

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

Suggerimenti per migliorare il rendimento in tempo reale

Se vuoi etichettare le immagini in un'applicazione in tempo reale, segui queste linee guida per ottenere le frequenze frame migliori:

  • Se utilizzi l'API Camera o camera2, riduci le chiamate all'etichettatore di immagini. Se un nuovo frame del video diventa disponibile mentre l'etichettatrice delle immagini è in esecuzione, inseriscilo. Per un esempio, consulta la classe VisionProcessorBase nell'app di esempio della guida rapida.
  • Se utilizzi l'API CameraX, assicurati che la strategia di backpressure sia impostata sul valore predefinito ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. In questo modo, viene garantito che venga inviata una sola immagine per l'analisi alla volta. Se vengono prodotte altre immagini quando l'analizzatore è occupato, queste verranno eliminate automaticamente e non verranno messe in coda per l'invio. Una volta chiusa l'immagine analizzata chiamando ImageProxy.close(), verrà inviata l'immagine più recente successiva.
  • Se utilizzi l'output dell'etichettatore di immagini per sovrapporre la grafica all'immagine di input, ottieni prima il risultato da ML Kit, poi esegui il rendering dell'immagine e il sovrapposizione in un unico passaggio. Viene visualizzato sulla superficie di visualizzazione solo una volta per ogni frame di input. Per un esempio, consulta le classi CameraSourcePreview e GraphicOverlay nell'app di esempio della guida di avvio rapido.
  • Se utilizzi l'API Camera2, acquisisci le immagini in formato ImageFormat.YUV_420_888. Se utilizzi la precedente API Camera, acquisisci le immagini in formato ImageFormat.NV21.