Étiqueter des images avec un modèle personnalisé sur Android

Vous pouvez utiliser ML Kit pour reconnaître des entités dans une image et les étiqueter. Cette API est compatible avec un large éventail de modèles personnalisés de classification d'images. Veuillez consultez Modèles personnalisés avec ML Kit pour obtenir des conseils les exigences de compatibilité des modèles, où trouver des modèles pré-entraînés, et comment entraîner vos propres modèles.

Il existe deux façons d'intégrer l'étiquetage d'image à des modèles personnalisés: en regroupant vos annonces le pipeline dans votre application ou à l'aide d'un pipeline sans bundle qui dépend sur les services Google Play. Si vous sélectionnez le pipeline dégroupé, votre application sera plus petite. Pour en savoir plus, consultez le tableau ci-dessous.

GroupéeSans catégorie
Nom de la bibliothèquecom.google.mlkit:image-labeling-customcom.google.android.gms:play-services-mlkit-image-labeling-custom
ImplémentationLe pipeline est associé de manière statique à votre application au moment de la compilation.Le pipeline est téléchargé de manière dynamique via les services Google Play.
Taille de l'applicationAugmentation de la taille d'environ 3,8 Mo.Augmentation de la taille d'environ 200 Ko.
Délai d'initialisationLe pipeline est disponible immédiatement.Vous devrez peut-être attendre le téléchargement du pipeline avant de la utiliser pour la première fois.
Étape du cycle de vie de l'APIDisponibilité générale (DG)Bêta

Il existe deux façons d'intégrer un modèle personnalisé : "regrouper le modèle par en le plaçant dans le dossier de composants de votre application ou en le téléchargeant de façon dynamique depuis Firebase. Le tableau suivant compare ces deux options.

Modèle groupé Modèle hébergé
Le modèle fait partie de l'APK de votre application, ce qui augmente sa taille. Le modèle ne fait pas partie de votre APK. Il est hébergé par l'importation dans Firebase Machine Learning.
Le modèle est disponible immédiatement, même lorsque l'appareil Android est hors connexion Le modèle est téléchargé à la demande
Pas besoin d'un projet Firebase Nécessite un projet Firebase
Vous devez publier à nouveau votre application pour mettre à jour le modèle Déployer les mises à jour du modèle sans publier à nouveau votre application
Pas de tests A/B intégrés Tests A/B faciles avec Firebase Remote Config

Essayer

Avant de commencer

  1. Dans le fichier build.gradle au niveau du projet, veillez à inclure dépôt Maven de Google dans vos fichiers buildscript et allprojects.

  2. Ajoutez les dépendances des bibliothèques Android ML Kit au fichier fichier Gradle au niveau de l'application, généralement app/build.gradle. Choisissez l'une des les dépendances suivantes en fonction de vos besoins:

    Pour regrouper le pipeline avec votre application:

    dependencies {
      // ...
      // Use this dependency to bundle the pipeline with your app
      implementation 'com.google.mlkit:image-labeling-custom:17.0.3'
    }
    

    Pour utiliser le pipeline dans les services Google Play:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded pipeline in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-image-labeling-custom:16.0.0-beta5'
    }
    
  3. Si vous choisissez d'utiliser le pipeline dans les services Google Play, vous pouvez configurer votre application pour qu'elle télécharge automatiquement le pipeline sur l'appareil après votre application est installée depuis le Play Store. Pour ce faire, ajoutez ce qui suit : dans le fichier AndroidManifest.xml de votre application:

    <application ...>
        ...
        <meta-data
            android:name="com.google.mlkit.vision.DEPENDENCIES"
            android:value="custom_ica" />
        <!-- To use multiple downloads: android:value="custom_ica,download2,download3" -->
    </application>
    

    Vous pouvez aussi vérifier explicitement la disponibilité du pipeline et demander un téléchargement via API ModuleInstallClient des services Google Play.

    Si vous n'activez pas les téléchargements de pipeline au moment de l'installation ou demandez un téléchargement explicite, le pipeline est téléchargé la première fois que vous exécutez l'étiqueteur. Demandes que vous effectuez avant la fin du téléchargement ne produit aucun résultat.

  4. Ajoutez la dépendance linkFirebase si vous souhaitez télécharger dynamiquement un depuis Firebase:

    Pour télécharger un modèle de manière dynamique depuis Firebase, ajoutez le linkFirebase la dépendance:

    dependencies {
      // ...
      // Image labeling feature with model downloaded from Firebase
      implementation 'com.google.mlkit:image-labeling-custom:17.0.3'
      // Or use the dynamically downloaded pipeline in Google Play Services
      // implementation 'com.google.android.gms:play-services-mlkit-image-labeling-custom:16.0.0-beta5'
      implementation 'com.google.mlkit:linkfirebase:17.0.0'
    }
    
  5. Si vous souhaitez télécharger un modèle, assurez-vous ajouter Firebase à votre projet Android ; si vous ne l'avez pas déjà fait. Cette opération n'est pas requise lorsque vous regroupez le modèle.

1. Charger le modèle

Configurer une source de modèle locale

Pour empaqueter le modèle avec votre application:

  1. Copiez le fichier de modèle (se terminant généralement par .tflite ou .lite) dans le répertoire Dossier assets/. (Vous devrez peut-être d'abord créer le dossier faites un clic droit sur le dossier app/, puis cliquez sur Nouveau > Dossier > dossier "Assets".

  2. Ajoutez ensuite les éléments suivants au fichier build.gradle de votre application pour vous assurer Gradle ne compresse pas le fichier de modèle lors de la compilation de l'application:

    android {
        // ...
        aaptOptions {
            noCompress "tflite"
            // or noCompress "lite"
        }
    }
    

    Le fichier de modèle sera inclus dans le package de l'application et disponible pour ML Kit en tant qu'élément brut.

  3. Créez l'objet LocalModel en spécifiant le chemin d'accès au fichier de modèle:

    Kotlin

    val localModel = LocalModel.Builder()
            .setAssetFilePath("model.tflite")
            // or .setAbsoluteFilePath(absolute file path to model file)
            // or .setUri(URI to model file)
            .build()

    Java

    LocalModel localModel =
        new LocalModel.Builder()
            .setAssetFilePath("model.tflite")
            // or .setAbsoluteFilePath(absolute file path to model file)
            // or .setUri(URI to model file)
            .build();

Configurer une source de modèle hébergé sur Firebase

Pour utiliser le modèle hébergé à distance, créez un objet RemoteModel en exécutant la commande suivante : FirebaseModelSource, en spécifiant le nom que vous avez attribué au modèle lorsque vous avez l'avez publiée:

Kotlin

// Specify the name you assigned in the Firebase console.
val remoteModel =
    CustomRemoteModel
        .Builder(FirebaseModelSource.Builder("your_model_name").build())
        .build()

Java

// Specify the name you assigned in the Firebase console.
CustomRemoteModel remoteModel =
    new CustomRemoteModel
        .Builder(new FirebaseModelSource.Builder("your_model_name").build())
        .build();

Ensuite, démarrez la tâche de téléchargement du modèle, en spécifiant les conditions dans lesquelles que vous souhaitez autoriser le téléchargement. Si le modèle ne figure pas sur l'appareil, ou si un modèle plus récent du modèle est disponible, la tâche téléchargera de manière asynchrone depuis Firebase:

Kotlin

val downloadConditions = DownloadConditions.Builder()
    .requireWifi()
    .build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
    .addOnSuccessListener {
        // Success.
    }

Java

DownloadConditions downloadConditions = new DownloadConditions.Builder()
        .requireWifi()
        .build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(@NonNull Task task) {
                // Success.
            }
        });

De nombreuses applications lancent la tâche de téléchargement dans leur code d'initialisation, vous pouvez le faire à tout moment avant d'avoir besoin d'utiliser le modèle.

Configurer l'étiqueteur d'images

Après avoir configuré les sources de votre modèle, créez un objet ImageLabeler à partir de l'un d'entre eux.

Les options suivantes sont disponibles :

Options
confidenceThreshold

Score de confiance minimal des étiquettes détectées. Si ce champ n'est pas défini, spécifié par les métadonnées du modèle sera utilisé. Si le modèle ne contient pas de métadonnées spécifiez un seuil de classificateur, un seuil par défaut de 0.0 utilisé.

maxResultCount

Nombre maximal d'étiquettes à renvoyer. Si ce champ n'est pas défini, la valeur par défaut de 10 seront utilisés.

Si vous ne disposez que d'un modèle groupé localement, il vous suffit de créer un étiqueteur à partir de votre Objet LocalModel:

Kotlin

val customImageLabelerOptions = CustomImageLabelerOptions.Builder(localModel)
    .setConfidenceThreshold(0.5f)
    .setMaxResultCount(5)
    .build()
val labeler = ImageLabeling.getClient(customImageLabelerOptions)

Java

CustomImageLabelerOptions customImageLabelerOptions =
        new CustomImageLabelerOptions.Builder(localModel)
            .setConfidenceThreshold(0.5f)
            .setMaxResultCount(5)
            .build();
ImageLabeler labeler = ImageLabeling.getClient(customImageLabelerOptions);

Si vous disposez d'un modèle hébergé à distance, vous devrez vérifier qu'il a été téléchargée avant de l’exécuter. Vous pouvez vérifier l'état du téléchargement du modèle à l'aide de la méthode isModelDownloaded() du gestionnaire de modèles.

Même si vous n'avez qu'à le confirmer avant d'exécuter l'étiqueteur, un modèle hébergé à distance et un modèle groupé localement, cela peut rendre d'effectuer cette vérification lors de l'instanciation de l'étiqueteur d'image: créez un à partir du modèle distant s'il a été téléchargé, et à partir de l'environnement dans le cas contraire.

Kotlin

RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
    .addOnSuccessListener { isDownloaded ->
    val optionsBuilder =
        if (isDownloaded) {
            CustomImageLabelerOptions.Builder(remoteModel)
        } else {
            CustomImageLabelerOptions.Builder(localModel)
        }
    val options = optionsBuilder
                  .setConfidenceThreshold(0.5f)
                  .setMaxResultCount(5)
                  .build()
    val labeler = ImageLabeling.getClient(options)
}

Java

RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(Boolean isDownloaded) {
                CustomImageLabelerOptions.Builder optionsBuilder;
                if (isDownloaded) {
                    optionsBuilder = new CustomImageLabelerOptions.Builder(remoteModel);
                } else {
                    optionsBuilder = new CustomImageLabelerOptions.Builder(localModel);
                }
                CustomImageLabelerOptions options = optionsBuilder
                    .setConfidenceThreshold(0.5f)
                    .setMaxResultCount(5)
                    .build();
                ImageLabeler labeler = ImageLabeling.getClient(options);
            }
        });

Si vous ne disposez que d'un modèle hébergé à distance, vous devez désactiver les paramètres (par exemple, griser ou masquer une partie de l'interface utilisateur), vous confirmez que le modèle a été téléchargé. Pour ce faire, rattachez un écouteur à la méthode download() du gestionnaire de modèles:

Kotlin

RemoteModelManager.getInstance().download(remoteModel, conditions)
    .addOnSuccessListener {
        // Download complete. Depending on your app, you could enable the ML
        // feature, or switch from the local model to the remote model, etc.
    }

Java

RemoteModelManager.getInstance().download(remoteModel, conditions)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(Void v) {
              // Download complete. Depending on your app, you could enable
              // the ML feature, or switch from the local model to the remote
              // model, etc.
            }
        });

2. Préparer l'image d'entrée

Ensuite, pour chaque image à laquelle vous souhaitez ajouter une étiquette, créez un InputImage de votre image. L'étiqueteur d'images s'exécute plus rapidement lorsque vous utilisez un Bitmap ou, si vous utilisez l'API camera2, un media.Image YUV_420_888, qui est si possible.

Vous pouvez créer un InputImage de différentes sources. Chacune d'elles est expliquée ci-dessous.

Utiliser un media.Image

Pour créer un InputImage à partir d'un objet media.Image, par exemple lorsque vous capturez une image à partir d'un l'appareil photo de l'appareil, transmettez l'objet media.Image et l'image la rotation sur InputImage.fromMediaImage().

Si vous utilisez les la bibliothèque CameraX, les OnImageCapturedListener et Les classes ImageAnalysis.Analyzer calculent la valeur de rotation pour vous.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Si vous n'utilisez pas de bibliothèque d'appareils photo qui indique le degré de rotation de l'image, le calcul à partir du degré de rotation de l'appareil et de l'orientation de la caméra capteur de l'appareil:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Ensuite, transmettez l'objet media.Image et valeur du degré de rotation sur InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Utiliser un URI de fichier

Pour créer un InputImage à partir d'un URI de fichier, transmettez le contexte de l'application et l'URI du fichier à InputImage.fromFilePath() Cela est utile lorsque vous Utiliser un intent ACTION_GET_CONTENT pour inviter l'utilisateur à sélectionner une image de son application Galerie.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Utiliser un ByteBuffer ou un ByteArray

Pour créer un InputImage d'un objet ByteBuffer ou ByteArray, calculez d'abord l'image degré de rotation décrit précédemment pour l'entrée media.Image. Ensuite, créez l'objet InputImage avec le tampon ou le tableau, ainsi que l'objet image la hauteur, la largeur, le format d'encodage des couleurs et le degré de rotation:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Utiliser un Bitmap

Pour créer un InputImage à partir d'un objet Bitmap, effectuez la déclaration suivante:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

L'image est représentée par un objet Bitmap associé à des degrés de rotation.

3. Exécuter l'étiqueteur d'images

Pour ajouter un libellé aux objets d'une image, transmettez l'objet image aux classes ImageLabeler. process().

Kotlin

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

4. Obtenir des informations sur les entités avec libellé

Si l'opération d'ajout d'étiquettes à l'image réussit, une liste de ImageLabel sont transmis à l'écouteur de réussite. Chaque objet ImageLabel représente un élément étiqueté dans l'image. Vous pouvez obtenir le texte de chaque libellé la description (si elle est disponible dans les métadonnées du fichier de modèle TensorFlow Lite), le score de confiance et l'index. Exemple :

Kotlin

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

Java

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

Conseils pour améliorer les performances en temps réel

Si vous souhaitez étiqueter des images dans une application en temps réel, suivez ces pour obtenir les meilleures fréquences d'images:

  • Si vous utilisez les Camera ou API camera2 limiter les appels à l'étiqueteur d'images. Si une nouvelle vidéo image devient disponible pendant que l'étiqueteur d'image est en cours d'exécution, supprimez le cadre. Consultez le VisionProcessorBase de l'application exemple de démarrage rapide.
  • Si vous utilisez l'API CameraX, Assurez-vous que la stratégie de contre-pression est définie sur sa valeur par défaut ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST Cela garantit qu'une seule image à la fois sera envoyée pour analyse. Si davantage d'images sont générées lorsque l'analyseur est occupé, elles sont automatiquement abandonnées et ne sont pas mises en file d'attente la livraison. Une fois que l'image en cours d'analyse est fermée en appelant ImageProxy.close(), l'image suivante la plus récente sera diffusée.
  • Si vous utilisez la sortie de l'étiqueteur d'images pour superposer des images l'image d'entrée, récupérez d'abord le résultat à partir de ML Kit, puis effectuez le rendu de l'image. et les superposer en une seule étape. Le rendu à la surface d'affichage une seule fois pour chaque trame d'entrée. Consultez le CameraSourcePreview et GraphicOverlay de l'application exemple de démarrage rapide.
  • Si vous utilisez l'API Camera2, capturez des images Format ImageFormat.YUV_420_888. Si vous utilisez l'ancienne API Camera, capturez les images Format ImageFormat.NV21.