É possível usar o Kit de ML para reconhecer entidades em uma imagem e rotulá-las. Essa API oferece suporte a uma ampla variedade de modelos de classificação de imagem personalizados. Não se esqueça consulte Modelos personalizados com o Kit de ML para receber orientações sobre requisitos de compatibilidade de modelos, onde encontrar modelos pré-treinados, e como treinar seus próprios modelos.
Há duas maneiras de integrar a rotulagem de imagens a modelos personalizados: o agrupamento do pipeline como parte do aplicativo ou usando um pipeline desagrupado que depende no Google Play Services. Se você selecionar o pipeline desagrupado, o app será menores. Veja mais detalhes na tabela abaixo.
Agrupadas | Desagrupado | |
---|---|---|
Nome da biblioteca | com.google.mlkit:image-labeling-custom | com.google.android.gms:play-services-mlkit-image-labeling-custom |
Implementação | O pipeline é vinculado estaticamente ao app no tempo de build. | O download do pipeline é feito dinamicamente pelo Google Play Services. |
Tamanho do app | Aumento de cerca de 3,8 MB no tamanho. | Cerca de 200 KB de aumento. |
Tempo de inicialização | O pipeline está disponível imediatamente. | Pode ser necessário aguardar o download do pipeline para usar o recurso pela primeira vez. |
Estágio do ciclo de vida da API | Disponibilidade geral (GA) | Beta |
Há duas maneiras de integrar um modelo personalizado: agrupar o modelo por colocá-lo na pasta de recursos do app ou fazer o download dele dinamicamente do Firebase. A tabela a seguir compara essas duas opções.
Modelo em pacote | Modelo hospedado |
---|---|
O modelo faz parte do APK do app, o que aumenta o tamanho dele. | O modelo não faz parte do seu APK. Ele é hospedado por meio do upload para Machine Learning do Firebase. |
O modelo estará disponível imediatamente, mesmo quando o dispositivo Android estiver off-line | O download do modelo é feito sob demanda |
Não é necessário ter um projeto do Firebase | Requer um projeto do Firebase |
É necessário republicar o app para atualizar o modelo | Enviar atualizações do modelo sem republicar o app |
Sem testes A/B integrados | Teste A/B fácil com a Configuração remota do Firebase |
Faça um teste
- Consulte o app de início rápido do Vision. um exemplo de uso do modelo empacotado e do app de início rápido do AutoML para uma exemplo de uso do modelo hospedado.
Antes de começar
No arquivo
build.gradle
no nível do projeto, inclua Repositório Maven do Google embuildscript
eallprojects
.Adicione as dependências das bibliotecas do Android do Kit de ML ao arquivo arquivo do Gradle no nível do app, que geralmente é
app/build.gradle
. Escolha uma das opções as seguintes dependências com base nas suas necessidades:Para agrupar o pipeline com o aplicativo:
dependencies { // ... // Use this dependency to bundle the pipeline with your app implementation 'com.google.mlkit:image-labeling-custom:17.0.3' }
Para usar o pipeline no Google Play Services:
dependencies { // ... // Use this dependency to use the dynamically downloaded pipeline in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-image-labeling-custom:16.0.0-beta5' }
Se você quiser usar o pipeline no Google Play Services, será possível configure seu app para fazer o download automático do pipeline para o dispositivo depois seu app é instalado pela Play Store. Para fazer isso, adicione o seguinte declaração ao arquivo
AndroidManifest.xml
do app:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="custom_ica" /> <!-- To use multiple downloads: android:value="custom_ica,download2,download3" --> </application>
Também é possível verificar explicitamente a disponibilidade do pipeline e solicitar o download pelo API ModuleInstallClient do Google Play Services.
Se você não ativar os downloads do pipeline no momento da instalação ou solicitar o download explícito, o download do pipeline é feito na primeira vez que você executa o rotulador. Solicitações feitas por você antes da conclusão do download não produzem resultados.
Adicione a dependência
linkFirebase
se quiser fazer o download dinâmico de um do Firebase:Para fazer o download dinâmico de um modelo do Firebase, adicione o método
linkFirebase
dependência:dependencies { // ... // Image labeling feature with model downloaded from Firebase implementation 'com.google.mlkit:image-labeling-custom:17.0.3' // Or use the dynamically downloaded pipeline in Google Play Services // implementation 'com.google.android.gms:play-services-mlkit-image-labeling-custom:16.0.0-beta5' implementation 'com.google.mlkit:linkfirebase:17.0.0' }
Se você quiser fazer o download de um modelo, verifique se adicione o Firebase ao seu projeto Android, caso ainda não tenha feito isso. Isso não é necessário quando você agrupa o modelo.
1. Carregar o modelo
Configurar uma fonte de modelo local
Para agrupar o modelo e o app, faça o seguinte:
Copie o arquivo do modelo (geralmente terminando em
.tflite
ou.lite
) para o arquivoassets/
. Talvez seja necessário criar a pasta primeiro clicando com o botão direito do mouse na pastaapp/
e, em seguida, Novo > Pasta > de recursos.)Em seguida, adicione o seguinte ao arquivo
build.gradle
do seu app para garantir que O Gradle não compacta o arquivo de modelo ao criar o app:android { // ... aaptOptions { noCompress "tflite" // or noCompress "lite" } }
O arquivo do modelo será incluído no pacote do app e estará disponível para o Kit de ML como um ativo bruto.
Crie o objeto
LocalModel
, especificando o caminho para o arquivo de modelo:Kotlin
val localModel = LocalModel.Builder() .setAssetFilePath("model.tflite") // or .setAbsoluteFilePath(absolute file path to model file) // or .setUri(URI to model file) .build()
Java
LocalModel localModel = new LocalModel.Builder() .setAssetFilePath("model.tflite") // or .setAbsoluteFilePath(absolute file path to model file) // or .setUri(URI to model file) .build();
Configurar uma fonte de modelo hospedada no Firebase
Para usar o modelo hospedado remotamente, crie um objeto RemoteModel
ao
FirebaseModelSource
, especificando o nome que você atribuiu ao modelo ao
publicou:
Kotlin
// Specify the name you assigned in the Firebase console. val remoteModel = CustomRemoteModel .Builder(FirebaseModelSource.Builder("your_model_name").build()) .build()
Java
// Specify the name you assigned in the Firebase console. CustomRemoteModel remoteModel = new CustomRemoteModel .Builder(new FirebaseModelSource.Builder("your_model_name").build()) .build();
Em seguida, inicie a tarefa de download do modelo, especificando as condições sob as quais do qual você quer permitir o download. Se o modelo não estiver no dispositivo ou se um modelo mais recente versão do modelo estiver disponível, a tarefa fará o download do arquivo do Firebase:
Kotlin
val downloadConditions = DownloadConditions.Builder() .requireWifi() .build() RemoteModelManager.getInstance().download(remoteModel, downloadConditions) .addOnSuccessListener { // Success. }
Java
DownloadConditions downloadConditions = new DownloadConditions.Builder() .requireWifi() .build(); RemoteModelManager.getInstance().download(remoteModel, downloadConditions) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(@NonNull Task task) { // Success. } });
Muitos apps iniciam a tarefa de download no código de inicialização, mas você pode fazer isso a qualquer momento antes de precisar usar o modelo.
Configurar o rotulador de imagens
Depois de configurar as origens do modelo, crie um objeto ImageLabeler
com
um deles.
As seguintes opções estão disponíveis:
Opções | |
---|---|
confidenceThreshold
|
Pontuação de confiança mínima dos rótulos detectados. Se não for definido, qualquer um o limite do classificador especificado pelos metadados do modelo será usado. Se o modelo não tiver metadados ou se os metadados não tiverem especificar um limite de classificador, um limite padrão de 0,0 será usados. |
maxResultCount
|
Número máximo de rótulos a serem retornados. Se não for definido, o valor padrão de 10 serão usados. |
Se você tiver apenas um modelo agrupado localmente, basta criar um rotulador
Objeto LocalModel
:
Kotlin
val customImageLabelerOptions = CustomImageLabelerOptions.Builder(localModel) .setConfidenceThreshold(0.5f) .setMaxResultCount(5) .build() val labeler = ImageLabeling.getClient(customImageLabelerOptions)
Java
CustomImageLabelerOptions customImageLabelerOptions = new CustomImageLabelerOptions.Builder(localModel) .setConfidenceThreshold(0.5f) .setMaxResultCount(5) .build(); ImageLabeler labeler = ImageLabeling.getClient(customImageLabelerOptions);
Se você tiver um modelo hospedado remotamente, será necessário verificar se ele foi
antes de executá-lo. É possível verificar o status do download do modelo
tarefa usando o método isModelDownloaded()
do gerenciador de modelos.
Embora isso só precise ser confirmado antes de executar o rotulador, se você mas tem um modelo hospedado remotamente e um modelo agrupado localmente, isso pode tornar sentido realizar essa verificação ao instanciar o rotulador de imagens: crie uma rotulador a partir do modelo remoto, caso ele tenha sido transferido por download, e a partir da de outro modelo.
Kotlin
RemoteModelManager.getInstance().isModelDownloaded(remoteModel) .addOnSuccessListener { isDownloaded -> val optionsBuilder = if (isDownloaded) { CustomImageLabelerOptions.Builder(remoteModel) } else { CustomImageLabelerOptions.Builder(localModel) } val options = optionsBuilder .setConfidenceThreshold(0.5f) .setMaxResultCount(5) .build() val labeler = ImageLabeling.getClient(options) }
Java
RemoteModelManager.getInstance().isModelDownloaded(remoteModel) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(Boolean isDownloaded) { CustomImageLabelerOptions.Builder optionsBuilder; if (isDownloaded) { optionsBuilder = new CustomImageLabelerOptions.Builder(remoteModel); } else { optionsBuilder = new CustomImageLabelerOptions.Builder(localModel); } CustomImageLabelerOptions options = optionsBuilder .setConfidenceThreshold(0.5f) .setMaxResultCount(5) .build(); ImageLabeler labeler = ImageLabeling.getClient(options); } });
Se você tiver apenas um modelo hospedado remotamente, desative o recurso
da interface (por exemplo, usar o recurso esmaecer ou ocultar parte da interface) até
confirme se o download do modelo foi concluído. Para fazer isso, anexe um listener
ao método download()
do gerenciador de modelos:
Kotlin
RemoteModelManager.getInstance().download(remoteModel, conditions) .addOnSuccessListener { // Download complete. Depending on your app, you could enable the ML // feature, or switch from the local model to the remote model, etc. }
Java
RemoteModelManager.getInstance().download(remoteModel, conditions) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(Void v) { // Download complete. Depending on your app, you could enable // the ML feature, or switch from the local model to the remote // model, etc. } });
2. Preparar a imagem de entrada
Em seguida, para cada imagem que você quer rotular, crie umInputImage
da imagem. O rotulador de imagens é executado mais rapidamente quando você usa um Bitmap
.
ou, se você usar a API camera2, um YUV_420_888 media.Image
, que são
quando possível.
Você pode criar um InputImage
de diferentes origens, cada uma explicada abaixo.
Como usar um media.Image
Para criar um InputImage
de um objeto media.Image
, como quando você captura uma imagem de um
da câmera do dispositivo, transmita o objeto media.Image
e o
rotação para InputImage.fromMediaImage()
.
Se você usar o método
CameraX, os recursos OnImageCapturedListener
e
As classes ImageAnalysis.Analyzer
calculam o valor de rotação
para você.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Se você não usar uma biblioteca de câmera que informe o grau de rotação da imagem, pode calculá-lo usando o grau de rotação do dispositivo e a orientação da câmera no dispositivo:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Em seguida, transmita o objeto media.Image
e o
grau de rotação para InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Usar um URI de arquivo
Para criar um InputImage
de um URI de arquivo, transmita o contexto do aplicativo e o URI do arquivo para
InputImage.fromFilePath()
. Isso é útil quando você
usar uma intent ACTION_GET_CONTENT
para solicitar que o usuário selecione
uma imagem do app Galeria.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Como usar ByteBuffer
ou ByteArray
Para criar um InputImage
de uma ByteBuffer
ou ByteArray
, primeiro calcule a imagem
grau de rotação conforme descrito anteriormente para a entrada media.Image
.
Depois, crie o objeto InputImage
com o buffer ou a matriz, junto com o
altura, largura, formato de codificação de cores e grau de rotação:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Como usar um Bitmap
Para criar um InputImage
de um objeto Bitmap
, faça a seguinte declaração:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
A imagem é representada por um objeto Bitmap
com os graus de rotação.
3. Executar o rotulador de imagens
Para rotular objetos em uma imagem, transmita o objeto image
para o objeto ImageLabeler
.
process()
.
Kotlin
labeler.process(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
labeler.process(image) .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() { @Override public void onSuccess(List<ImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. Receber informações sobre entidades rotuladas
Se a operação de rotulagem de imagem for bem-sucedida, uma lista deImageLabel
são transmitidos para o listener de êxito. Cada objeto ImageLabel
representa algo que foi rotulado na imagem. É possível receber o texto de cada rótulo
descrição (se disponível nos metadados do arquivo de modelo do TensorFlow Lite), pontuação de confiança e índice. Exemplo:
Kotlin
for (label in labels) { val text = label.text val confidence = label.confidence val index = label.index }
Java
for (ImageLabel label : labels) { String text = label.getText(); float confidence = label.getConfidence(); int index = label.getIndex(); }
Dicas para melhorar o desempenho em tempo real
Se você quiser rotular imagens em um aplicativo em tempo real, siga estas instruções para atingir os melhores frame rates:
- Se você usar o método
Camera
ou APIcamera2
, de limitação para o rotulador de imagens. Se um novo vídeo fique disponível enquanto o rotulador de imagens está em execução, elimine o frame. Consulte aVisionProcessorBase
no app de amostra do guia de início rápido para conferir um exemplo. - Se você usa a API
CameraX
, verificar se a estratégia de pressão de retorno está definida para o valor padrãoImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. Isso garante que apenas uma imagem será enviada para análise por vez. Se mais imagens forem produzidas quando o analisador estiver ocupado, elas serão descartadas automaticamente e não serão enfileiradas entrega. Depois que a imagem que está sendo analisada é fechada, chamando ImageProxy.close(), a próxima imagem mais recente será entregue. - Se você usar a saída do rotulador de imagens para sobrepor elementos gráficos
a imagem de entrada, primeiro acesse o resultado do Kit de ML e, em seguida, renderize a imagem
e sobreposição em uma única etapa. Isso é renderizado na superfície da tela.
apenas uma vez para cada frame de entrada. Consulte a
CameraSourcePreview
eGraphicOverlay
no app de amostra do guia de início rápido para conferir um exemplo. - Se você usar a API Camera2, capture imagens no
ImageFormat.YUV_420_888
. Se você usar a API Camera mais antiga, capture imagens noImageFormat.NV21
.