Anda dapat menggunakan ML Kit untuk memberi label pada objek yang dikenali dalam gambar. Model default yang disediakan dengan ML Kit mendukung 400+ label berbeda.
Cobalah
- Cobalah aplikasi contoh untuk melihat contoh penggunaan API ini.
Sebelum memulai
- Sertakan pod ML Kit berikut di Podfile Anda:
pod 'GoogleMLKit/ImageLabeling', '15.5.0'
- Setelah Anda menginstal atau mengupdate Pod project, buka project Xcode menggunakan
.xcworkspace
. ML Kit didukung di Xcode versi 12.4 atau yang lebih baru.
Sekarang Anda siap memberi label pada gambar.
1. Menyiapkan gambar input
Buat objek VisionImage
menggunakan UIImage
atau objek
CMSampleBuffer
.
Jika Anda menggunakan UIImage
, ikuti langkah-langkah berikut:
- Buat objek
VisionImage
denganUIImage
. Pastikan untuk menentukan.orientation
yang benar.Swift
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
Objective-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
Jika Anda menggunakan CMSampleBuffer
, ikuti langkah-langkah berikut:
-
Tentukan orientasi data gambar yang terdapat dalam
CMSampleBuffer
.Untuk mendapatkan orientasi gambar:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
Objective-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- Buat objek
VisionImage
menggunakan Objek dan orientasiCMSampleBuffer
:Swift
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
Objective-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
2. Mengonfigurasi dan menjalankan pemberi label pada gambar
Untuk memberi label pada objek dalam gambar, teruskan objekVisionImage
ke elemen
Metode processImage()
ImageLabeler
.
- Pertama, dapatkan instance
ImageLabeler
.
Swift
let labeler = ImageLabeler.imageLabeler() // Or, to set the minimum confidence required: // let options = ImageLabelerOptions() // options.confidenceThreshold = 0.7 // let labeler = ImageLabeler.imageLabeler(options: options)
Objective-C
MLKImageLabeler *labeler = [MLKImageLabeler imageLabeler]; // Or, to set the minimum confidence required: // MLKImageLabelerOptions *options = // [[MLKImageLabelerOptions alloc] init]; // options.confidenceThreshold = 0.7; // MLKImageLabeler *labeler = // [MLKImageLabeler imageLabelerWithOptions:options];
- Lalu, teruskan gambar ke metode
processImage()
:
Swift
labeler.process(image) { labels, error in guard error == nil, let labels = labels else { return } // Task succeeded. // ... }
Objective-C
[labeler processImage:image completion:^(NSArray*_Nullable labels, NSError *_Nullable error) { if (error != nil) { return; } // Task succeeded. // ... }];
3. Mendapatkan informasi tentang objek berlabel
Jika pelabelan gambar berhasil, handler penyelesaian menerima array
Objek ImageLabel
. Setiap objek ImageLabel
mewakili sesuatu yang
yang diberi label dalam gambar. Model dasar mendukung 400+ label yang berbeda.
Anda dapat memperoleh deskripsi teks setiap label, indeks di antara semua label yang didukung oleh
model, dan skor keyakinan kecocokannya. Contoh:
Swift
for label in labels { let labelText = label.text let confidence = label.confidence let index = label.index }
Objective-C
for (MLKImageLabel *label in labels) { NSString *labelText = label.text; float confidence = label.confidence; NSInteger index = label.index; }
Tips untuk meningkatkan performa real-time
Jika Anda ingin memberikan label pada gambar dalam aplikasi real-time, ikuti panduan untuk mencapai kecepatan frame terbaik:
- Untuk memproses frame video, gunakan API sinkron
results(in:)
dari pemberi label gambar. Telepon metode ini dari classAVCaptureVideoDataOutputSampleBufferDelegate
captureOutput(_, didOutput:from:)
untuk mendapatkan hasil dari video yang diberikan secara sinkron {i>frame<i}. SimpanAVCaptureVideoDataOutput
alwaysDiscardsLateVideoFrames
sebagaitrue
untuk men-throttle panggilan ke pemberi label gambar. Jika frame video tersedia saat pemberi label gambar sedang berjalan, dan frame tersebut akan dihapus. - Jika Anda menggunakan output pemberi label gambar untuk menempatkan grafis pada gambar input, pertama-tama dapatkan hasilnya dari ML Kit, lalu render gambar dan overlay dalam satu langkah. Dengan demikian, Anda merender ke permukaan tampilan hanya sekali untuk setiap {i> frame<i} input yang diproses. Lihat updatePreviewOverlayViewWithLastFrame dalam contoh panduan memulai ML Kit sebagai contoh.