Ajouter une étiquette à des images avec ML Kit sur iOS
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Vous pouvez utiliser ML Kit pour étiqueter les objets reconnus dans une image. Le modèle par défaut fourni avec
ML Kit accepte plus de 400 étiquettes différentes.
Essayer
Testez l'application exemple pour :
consultez un exemple d'utilisation de cette API.
Avant de commencer
Incluez les pods ML Kit suivants dans votre Podfile:
pod 'GoogleMLKit/ImageLabeling', '8.0.0'
Après avoir installé ou mis à jour les pods de votre projet, ouvrez votre projet Xcode à l'aide de son
.xcworkspace ML Kit est compatible avec Xcode 12.4 ou version ultérieure.
Vous êtes maintenant prêt à étiqueter des images.
1. Préparer l'image d'entrée
Créez un objet VisionImage à l'aide d'un UIImage ou d'un
CMSampleBuffer
Si vous utilisez un UIImage, procédez comme suit:
Créez un objet VisionImage avec UIImage. Veillez à spécifier le bon .orientation.
Swift
let image = VisionImage(image: UIImage)
visionImage.orientation = image.imageOrientation
Pour étiqueter des objets dans une image, transmettez l'objet VisionImage à la
La méthode processImage() de ImageLabeler.
Commencez par obtenir une instance de ImageLabeler.
Swift
letlabeler=ImageLabeler.imageLabeler()// Or, to set the minimum confidence required:// let options = ImageLabelerOptions()// options.confidenceThreshold = 0.7// let labeler = ImageLabeler.imageLabeler(options: options)
Objective-C
MLKImageLabeler*labeler=[MLKImageLabelerimageLabeler];// Or, to set the minimum confidence required:// MLKImageLabelerOptions *options =// [[MLKImageLabelerOptions alloc] init];// options.confidenceThreshold = 0.7;// MLKImageLabeler *labeler =// [MLKImageLabeler imageLabelerWithOptions:options];
Transmettez ensuite l'image à la méthode processImage():
3. Obtenir des informations sur les objets étiquetés
Si l'étiquetage d'image réussit, le gestionnaire d'achèvement reçoit un tableau des
Objets ImageLabel. Chaque objet ImageLabel représente un élément
étiquetées sur l'image. Le modèle de base accepte plus de 400 étiquettes différentes.
Vous pouvez obtenir la description et l'index de chaque libellé, parmi tous ceux compatibles avec
le modèle et le score de confiance de la correspondance. Exemple :
Conseils pour améliorer les performances en temps réel
Si vous souhaitez étiqueter des images dans une application en temps réel, suivez ces
pour obtenir des fréquences d'images optimales:
Pour traiter les images vidéo, utilisez l'API synchrone results(in:) de l'étiqueteur d'images. Appeler
cette méthode à partir de AVCaptureVideoDataOutputSampleBufferDelegate
<ph type="x-smartling-placeholder"></ph>
captureOutput(_, didOutput:from:) pour obtenir les résultats d'une vidéo donnée de manière synchrone.
cadre. Conserver <ph type="x-smartling-placeholder"></ph>
de AVCaptureVideoDataOutputalwaysDiscardsLateVideoFrames en tant que true afin de limiter les appels à l'étiqueteur d'images. Si un nouveau
l'image vidéo devient disponible pendant l'exécution de l'étiqueteur d'image, elle est ignorée.
Si vous utilisez la sortie de l'étiqueteur
d'images pour superposer des images
l'image d'entrée, récupérez d'abord le résultat à partir de ML Kit, puis effectuez le rendu de l'image.
et les superposer en une seule étape. Cela vous permet d'afficher
sur la surface d'affichage
une seule fois pour chaque trame d'entrée traitée. Consultez la classe updatePreviewOverlayViewWithLastFrame.
dans l'exemple de démarrage rapide de ML Kit.
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/08/29 (UTC).
[null,null,["Dernière mise à jour le 2025/08/29 (UTC)."],[[["\u003cp\u003eML Kit's image labeling API lets you identify objects in images using a pre-trained model that recognizes over 400 labels.\u003c/p\u003e\n"],["\u003cp\u003eTo use this API, you need to include the \u003ccode\u003eGoogleMLKit/ImageLabeling\u003c/code\u003e pod, create a \u003ccode\u003eVisionImage\u003c/code\u003e object from your image, and then process it with an \u003ccode\u003eImageLabeler\u003c/code\u003e instance.\u003c/p\u003e\n"],["\u003cp\u003eResults are provided as an array of \u003ccode\u003eImageLabel\u003c/code\u003e objects, each containing the label's text, confidence score, and index.\u003c/p\u003e\n"],["\u003cp\u003eFor real-time applications, leverage the synchronous \u003ccode\u003eresults(in:)\u003c/code\u003e API and manage video frame processing efficiently to maintain optimal frame rates.\u003c/p\u003e\n"]]],["ML Kit allows image labeling using a default model with 400+ labels. To begin, include the `GoogleMLKit/ImageLabeling` pod in your Podfile and open the `.xcworkspace` in Xcode. Input images are prepared using `VisionImage` objects, created from either `UIImage` or `CMSampleBuffer`. An `ImageLabeler` instance processes the image, returning `ImageLabel` objects with text, confidence, and index. For real-time performance, use the synchronous `results(in:)` API with video frames, managing the frame rate.\n"],null,["You can use ML Kit to label objects recognized in an image. The default model provided with\nML Kit supports 400+ different labels.\n\n\u003cbr /\u003e\n\n| **Note:** ML Kit iOS APIs only run on 64-bit devices. If you build your app with 32-bit support, check the device's architecture before using this API.\n\nTry it out\n\n- Play around with [the sample app](https://github.com/googlesamples/mlkit/tree/master/ios/quickstarts/vision) to see an example usage of this API.\n\nBefore you begin\n\n1. Include the following ML Kit pods in your Podfile: \n\n ```\n pod 'GoogleMLKit/ImageLabeling', '8.0.0'\n ```\n2. After you install or update your project's Pods, open your Xcode project using its `.xcworkspace`. ML Kit is supported in Xcode version 12.4 or greater.\n\nNow you are ready to label images.\n\n1. Prepare the input image\n\nCreate a [`VisionImage`](/ml-kit/reference/swift/mlkitvision/api/reference/Classes/VisionImage) object using a `UIImage` or a\n`CMSampleBuffer`.\n\nIf you use a `UIImage`, follow these steps:\n\n- Create a [`VisionImage`](/ml-kit/reference/swift/mlkitvision/api/reference/Classes/VisionImage) object with the `UIImage`. Make sure to specify the correct `.orientation`. \n\n Swift \n\n ```text\n let image = VisionImage(image: UIImage)\n visionImage.orientation = image.imageOrientation\n ```\n\n Objective-C \n\n ```objective-c\n MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image];\n visionImage.orientation = image.imageOrientation;\n ```\n\nIf you use a `CMSampleBuffer`, follow these steps:\n\n- Specify the orientation of the image data contained in the\n `CMSampleBuffer`.\n\n To get the image orientation: \n\n Swift \n\n ```gdscript\n func imageOrientation(\n deviceOrientation: UIDeviceOrientation,\n cameraPosition: AVCaptureDevice.Position\n ) -\u003e UIImage.Orientation {\n switch deviceOrientation {\n case .portrait:\n return cameraPosition == .front ? .leftMirrored : .right\n case .landscapeLeft:\n return cameraPosition == .front ? .downMirrored : .up\n case .portraitUpsideDown:\n return cameraPosition == .front ? .rightMirrored : .left\n case .landscapeRight:\n return cameraPosition == .front ? .upMirrored : .down\n case .faceDown, .faceUp, .unknown:\n return .up\n }\n }\n \n ```\n\n Objective-C \n\n ```css+lasso\n - (UIImageOrientation)\n imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation\n cameraPosition:(AVCaptureDevicePosition)cameraPosition {\n switch (deviceOrientation) {\n case UIDeviceOrientationPortrait:\n return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored\n : UIImageOrientationRight;\n\n case UIDeviceOrientationLandscapeLeft:\n return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored\n : UIImageOrientationUp;\n case UIDeviceOrientationPortraitUpsideDown:\n return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored\n : UIImageOrientationLeft;\n case UIDeviceOrientationLandscapeRight:\n return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored\n : UIImageOrientationDown;\n case UIDeviceOrientationUnknown:\n case UIDeviceOrientationFaceUp:\n case UIDeviceOrientationFaceDown:\n return UIImageOrientationUp;\n }\n }\n \n ```\n- Create a [`VisionImage`](/ml-kit/reference/swift/mlkitvision/api/reference/Classes/VisionImage) object using the `CMSampleBuffer` object and orientation: \n\n Swift \n\n ```povray\n let image = VisionImage(buffer: sampleBuffer)\n image.orientation = imageOrientation(\n deviceOrientation: UIDevice.current.orientation,\n cameraPosition: cameraPosition)\n ```\n\n Objective-C \n\n ```objective-c\n MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer];\n image.orientation =\n [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation\n cameraPosition:cameraPosition];\n ```\n\n2. Configure and run the image labeler To label objects in an image, pass the `VisionImage` object to the `ImageLabeler`'s `processImage()` method.\n\n\u003cbr /\u003e\n\n1. First, get an instance of `ImageLabeler`.\n\nSwift \n\n```swift\nlet labeler = ImageLabeler.imageLabeler()\n\n// Or, to set the minimum confidence required:\n// let options = ImageLabelerOptions()\n// options.confidenceThreshold = 0.7\n// let labeler = ImageLabeler.imageLabeler(options: options)\n```\n\nObjective-C \n\n```objective-c\nMLKImageLabeler *labeler = [MLKImageLabeler imageLabeler];\n\n// Or, to set the minimum confidence required:\n// MLKImageLabelerOptions *options =\n// [[MLKImageLabelerOptions alloc] init];\n// options.confidenceThreshold = 0.7;\n// MLKImageLabeler *labeler =\n// [MLKImageLabeler imageLabelerWithOptions:options];\n```\n\n1. Then, pass the image to the `processImage()` method:\n\nSwift \n\n```swift\nlabeler.process(image) { labels, error in\n guard error == nil, let labels = labels else { return }\n\n // Task succeeded.\n // ...\n}\n```\n\nObjective-C \n\n```objective-c\n[labeler processImage:image\ncompletion:^(NSArray *_Nullable labels,\n NSError *_Nullable error) {\n if (error != nil) { return; }\n\n // Task succeeded.\n // ...\n}];\n```\n\n3. Get information about labeled objects\n\nIf image labeling succeeds, the completion handler receives an array of\n`ImageLabel` objects. Each `ImageLabel` object represents something that was\nlabeled in the image. The base model supports [400+ different labels](/ml-kit/vision/image-labeling/label-map).\nYou can get each label's text description, index among all labels supported by\nthe model, and the confidence score of the match. For example: \n\nSwift \n\n```swift\nfor label in labels {\n let labelText = label.text\n let confidence = label.confidence\n let index = label.index\n}\n```\n\nObjective-C \n\n```objective-c\nfor (MLKImageLabel *label in labels) {\n NSString *labelText = label.text;\n float confidence = label.confidence;\n NSInteger index = label.index;\n}\n```\n\nTips to improve real-time performance\n\nIf you want to label images in a real-time application, follow these\nguidelines to achieve the best framerates:\n\n- For processing video frames, use the `results(in:)` synchronous API of the image labeler. Call this method from the [`AVCaptureVideoDataOutputSampleBufferDelegate`](https://developer.apple.com/documentation/avfoundation/avcapturevideodataoutputsamplebufferdelegate)'s [`captureOutput(_, didOutput:from:)`](https://developer.apple.com/documentation/avfoundation/avcapturevideodataoutputsamplebufferdelegate/1385775-captureoutput) function to synchronously get results from the given video frame. Keep [`AVCaptureVideoDataOutput`](https://developer.apple.com/documentation/avfoundation/avcapturevideodataoutput)'s [`alwaysDiscardsLateVideoFrames`](https://developer.apple.com/documentation/avfoundation/avcapturevideodataoutput/1385780-alwaysdiscardslatevideoframes) as `true` to throttle calls to the image labeler. If a new video frame becomes available while the image labeler is running, it will be dropped.\n- If you use the output of the image labeler to overlay graphics on the input image, first get the result from ML Kit, then render the image and overlay in a single step. By doing so, you render to the display surface only once for each processed input frame. See the [updatePreviewOverlayViewWithLastFrame](https://github.com/googlesamples/mlkit/blob/master/ios/quickstarts/vision/VisionExample/CameraViewController.swift) in the ML Kit quickstart sample for an example."]]