Objekte mit ML Kit für Android erkennen und verfolgen

Mit ML Kit können Sie Objekte in aufeinanderfolgenden Videoframes erkennen und verfolgen.

Wenn Sie ein Bild an ML Kit übergeben, werden bis zu fünf Objekte im Bild sowie die Position jedes Objekts im Bild erkannt. Wenn Sie Objekte in Videostreams erkennen, hat jedes Objekt eine eindeutige ID, mit der Sie das Objekt von Frame zu Frame verfolgen können. Optional können Sie auch die grobe Objektklassifizierung aktivieren, bei der Objekte mit allgemeinen Kategoriebeschreibungen gekennzeichnet werden.

Jetzt ausprobieren

Hinweis

  1. In die Datei build.gradle auf Projektebene muss das Maven-Repository von Google in die Abschnitte buildscript und allprojects aufgenommen werden.
  2. Fügen Sie die Abhängigkeiten für die ML Kit Android-Bibliotheken der Gradle-Datei auf App-Ebene Ihres Moduls hinzu. Diese befindet sich in der Regel unter app/build.gradle:
    dependencies {
      // ...
    
      implementation 'com.google.mlkit:object-detection:17.0.2'
    
    }

1. Objektdetektor konfigurieren

Um Objekte zu erkennen und zu verfolgen, erstellen Sie zuerst eine Instanz von ObjectDetector und geben Sie optional alle Detektoreinstellungen an, die Sie von den Standardeinstellungen abweichen möchten.

  1. Konfigurieren Sie den Objektdetektor für Ihren Anwendungsfall mit einem ObjectDetectorOptions-Objekt. Sie können die folgenden Einstellungen ändern:

    Einstellungen für den Objektdetektor
    Erkennungsmodus STREAM_MODE (Standard) | SINGLE_IMAGE_MODE

    In STREAM_MODE (Standard) wird der Objektdetektor mit geringer Latenz ausgeführt, liefert aber bei den ersten Aufrufen des Detektors möglicherweise unvollständige Ergebnisse (z. B. nicht angegebene Begrenzungsrahmen oder Kategorielabels). Außerdem weist der Detektor in STREAM_MODE Objekten Tracking-IDs zu, mit denen Sie Objekte über Frames hinweg verfolgen können. Verwenden Sie diesen Modus, wenn Sie Objekte verfolgen möchten oder wenn eine niedrige Latenz wichtig ist, z. B. bei der Echtzeitverarbeitung von Videostreams.

    In SINGLE_IMAGE_MODE gibt der Objektdetektor das Ergebnis zurück, nachdem der Begrenzungsrahmen des Objekts bestimmt wurde. Wenn Sie auch die Klassifizierung aktivieren, wird das Ergebnis zurückgegeben, nachdem sowohl das umgebende Rechteck als auch das Kategorielabel verfügbar sind. Infolge dessen ist die Latenz bei der Erkennung möglicherweise höher. Außerdem werden in SINGLE_IMAGE_MODE keine Tracking-IDs zugewiesen. Verwenden Sie diesen Modus, wenn die Latenz nicht kritisch ist und Sie keine Teilergebnisse erhalten möchten.

    Mehrere Objekte erkennen und verfolgen false (Standard) | true

    Gibt an, ob bis zu fünf Objekte oder nur das wichtigste Objekt (Standard) erkannt und verfolgt werden sollen.

    Objekte klassifizieren false (Standard) | true

    Gibt an, ob erkannte Objekte in grobe Kategorien eingeteilt werden sollen. Wenn die Funktion aktiviert ist, klassifiziert die Objekterkennung Objekte in die folgenden Kategorien: Modeartikel, Lebensmittel, Haushaltswaren, Orte und Pflanzen.

    Die API zur Objekterkennung und zum Objekt-Tracking ist für die folgenden beiden Hauptanwendungsfälle optimiert:

    • Live-Erkennung und ‑Tracking des wichtigsten Objekts im Sucher der Kamera.
    • Die Erkennung mehrerer Objekte in einem statischen Bild.

    So konfigurieren Sie die API für diese Anwendungsfälle:

    Kotlin

    // Live detection and tracking
    val options = ObjectDetectorOptions.Builder()
            .setDetectorMode(ObjectDetectorOptions.STREAM_MODE)
            .enableClassification()  // Optional
            .build()
    
    // Multiple object detection in static images
    val options = ObjectDetectorOptions.Builder()
            .setDetectorMode(ObjectDetectorOptions.SINGLE_IMAGE_MODE)
            .enableMultipleObjects()
            .enableClassification()  // Optional
            .build()

    Java

    // Live detection and tracking
    ObjectDetectorOptions options =
            new ObjectDetectorOptions.Builder()
                    .setDetectorMode(ObjectDetectorOptions.STREAM_MODE)
                    .enableClassification()  // Optional
                    .build();
    
    // Multiple object detection in static images
    ObjectDetectorOptions options =
            new ObjectDetectorOptions.Builder()
                    .setDetectorMode(ObjectDetectorOptions.SINGLE_IMAGE_MODE)
                    .enableMultipleObjects()
                    .enableClassification()  // Optional
                    .build();
  2. So rufen Sie eine Instanz von ObjectDetector ab:

    Kotlin

    val objectDetector = ObjectDetection.getClient(options)

    Java

    ObjectDetector objectDetector = ObjectDetection.getClient(options);

2. Eingabebild vorbereiten

Wenn Sie Objekte erkennen und verfolgen möchten, übergeben Sie Bilder an die Methode process() der ObjectDetector-Instanz.

Der Objektdetektor wird direkt aus einem Bitmap, NV21 ByteBuffer oder YUV_420_888 media.Image ausgeführt. Die Erstellung einer InputImage aus diesen Quellen wird empfohlen, wenn Sie direkten Zugriff auf eine der Quellen haben. Wenn Sie eine InputImage aus anderen Quellen erstellen, übernehmen wir die Konvertierung intern für Sie. Das kann jedoch weniger effizient sein.

Gehen Sie für jedes Video- oder Bild-Frame in einer Sequenz so vor:

Sie können ein InputImage-Objekt aus verschiedenen Quellen erstellen. Die einzelnen Quellen werden unten beschrieben.

Mit einem media.Image

Wenn Sie ein InputImage-Objekt aus einem media.Image-Objekt erstellen möchten, z. B. wenn Sie ein Bild mit der Kamera eines Geräts aufnehmen, übergeben Sie das media.Image-Objekt und die Drehung des Bildes an InputImage.fromMediaImage().

Wenn Sie die CameraX-Bibliothek verwenden, berechnen die Klassen OnImageCapturedListener und ImageAnalysis.Analyzer den Rotationswert für Sie.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Wenn Sie keine Kamerabibliothek verwenden, die den Drehwinkel des Bildes angibt, können Sie ihn aus dem Drehwinkel des Geräts und der Ausrichtung des Kamerasensors im Gerät berechnen:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Übergeben Sie dann das media.Image-Objekt und den Wert für den Drehwinkel an InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Datei-URI verwenden

Wenn Sie ein InputImage-Objekt aus einem Datei-URI erstellen möchten, übergeben Sie den App-Kontext und den Datei-URI an InputImage.fromFilePath(). Das ist nützlich, wenn Sie mit einem ACTION_GET_CONTENT-Intent den Nutzer auffordern, ein Bild aus seiner Galerie-App auszuwählen.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

ByteBuffer oder ByteArray verwenden

Wenn Sie ein InputImage-Objekt aus einem ByteBuffer oder einem ByteArray erstellen möchten, berechnen Sie zuerst den Bildrotationsgrad wie zuvor für die media.Image-Eingabe beschrieben. Erstellen Sie dann das InputImage-Objekt mit dem Puffer oder Array sowie der Höhe, Breite, dem Farbcodierungsformat und dem Rotationsgrad des Bildes:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Mit einem Bitmap

So erstellen Sie ein InputImage-Objekt aus einem Bitmap-Objekt:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Das Bild wird durch ein Bitmap-Objekt zusammen mit den Rotationsgraden dargestellt.

3. Bild verarbeiten

Übergeben Sie das Bild an die Methode process():

Kotlin

objectDetector.process(image)
    .addOnSuccessListener { detectedObjects ->
        // Task completed successfully
        // ...
    }
    .addOnFailureListener { e ->
        // Task failed with an exception
        // ...
    }

Java

objectDetector.process(image)
    .addOnSuccessListener(
        new OnSuccessListener<List<DetectedObject>>() {
            @Override
            public void onSuccess(List<DetectedObject> detectedObjects) {
                // Task completed successfully
                // ...
            }
        })
    .addOnFailureListener(
        new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });
in der Beispiel-App für die Kurzanleitung.

4. Informationen zu erkannten Objekten abrufen

Wenn der Aufruf von process() erfolgreich ist, wird eine Liste von DetectedObjects an den Erfolgs-Listener übergeben.

Jedes DetectedObject enthält die folgenden Attribute:

Begrenzungsrahmen Ein Rect, das die Position des Objekts im Bild angibt.
Tracking-ID Eine Ganzzahl, die das Objekt in Bildern identifiziert. Null im SINGLE_IMAGE_MODE.
Labels
Labelbeschreibung Die Textbeschreibung des Labels. Es handelt sich um eine der Stringkonstanten, die in PredefinedCategory definiert sind.
Label index Der Index des Labels unter allen vom Klassifikator unterstützten Labels. Es handelt sich um eine der in PredefinedCategory definierten ganzzahligen Konstanten.
Label-Konfidenz Der Konfidenzwert der Objektklassifizierung.

Kotlin

for (detectedObject in detectedObjects) {
    val boundingBox = detectedObject.boundingBox
    val trackingId = detectedObject.trackingId
    for (label in detectedObject.labels) {
        val text = label.text
        if (PredefinedCategory.FOOD == text) {
            ...
        }
        val index = label.index
        if (PredefinedCategory.FOOD_INDEX == index) {
            ...
        }
        val confidence = label.confidence
    }
}

Java

// The list of detected objects contains one item if multiple
// object detection wasn't enabled.
for (DetectedObject detectedObject : detectedObjects) {
    Rect boundingBox = detectedObject.getBoundingBox();
    Integer trackingId = detectedObject.getTrackingId();
    for (Label label : detectedObject.getLabels()) {
        String text = label.getText();
        if (PredefinedCategory.FOOD.equals(text)) {
            ...
        }
        int index = label.getIndex();
        if (PredefinedCategory.FOOD_INDEX == index) {
            ...
        }
        float confidence = label.getConfidence();
    }
}

Für eine hohe Nutzerfreundlichkeit sorgen

Damit Ihre App für Nutzer optimal funktioniert, sollten Sie sich an den folgenden Richtlinien orientieren:

  • Eine erfolgreiche Objekterkennung hängt von der visuellen Komplexität des Objekts ab. Damit Objekte mit einer geringen Anzahl visueller Merkmale erkannt werden können, müssen sie möglicherweise einen größeren Teil des Bildes einnehmen. Sie sollten Nutzern eine Anleitung geben, wie sie Eingaben erfassen, die gut zu den Objekten passen, die Sie erkennen möchten.
  • Wenn Sie die Klassifizierung verwenden und Objekte erkennen möchten, die nicht eindeutig in die unterstützten Kategorien fallen, müssen Sie eine spezielle Verarbeitung für unbekannte Objekte implementieren.

Sehen Sie sich auch die ML Kit Material Design-Showcase-App und die Material Design-Sammlung Patterns for machine learning-powered features an.

Leistungsoptimierung

Wenn Sie die Objekterkennung in einer Echtzeitanwendung verwenden möchten, sollten Sie die folgenden Richtlinien beachten, um die besten Framerates zu erzielen:

  • Wenn Sie den Streamingmodus in einer Echtzeitanwendung verwenden, sollten Sie keine Mehrfacherkennung von Objekten nutzen, da die meisten Geräte keine angemessenen Framerates erzielen können.

  • Deaktivieren Sie die Klassifizierung, wenn Sie sie nicht benötigen.

  • Wenn Sie die API Camera oder camera2 verwenden, drosseln Sie die Aufrufe des Detektors. Wenn ein neuer Videoframes verfügbar wird, während der Detektor ausgeführt wird, verwerfen Sie den Frame. Ein Beispiel finden Sie in der Klasse VisionProcessorBase in der Beispiel-App für die Kurzanleitung.
  • Wenn Sie die CameraX API verwenden, muss die Backpressure-Strategie auf den Standardwert ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST festgelegt sein. So wird sichergestellt, dass jeweils nur ein Bild zur Analyse bereitgestellt wird. Wenn mehr Bilder erstellt werden, während der Analyzer beschäftigt ist, werden sie automatisch verworfen und nicht für die Übermittlung in die Warteschlange gestellt. Sobald das analysierte Bild durch Aufrufen von ImageProxy.close() geschlossen wird, wird das nächste aktuelle Bild bereitgestellt.
  • Wenn Sie die Ausgabe des Detektors verwenden, um Grafiken auf dem Eingabebild zu überlagern, rufen Sie zuerst das Ergebnis von ML Kit ab und rendern Sie dann das Bild und die Überlagerung in einem einzigen Schritt. Das Bild wird für jeden Eingabe-Frame nur einmal auf der Displayoberfläche gerendert. Ein Beispiel finden Sie in der Beispiel-App für die Kurzanleitung in den Klassen CameraSourcePreview und GraphicOverlay.
  • Wenn Sie die Camera2 API verwenden, nehmen Sie Bilder im ImageFormat.YUV_420_888-Format auf. Wenn Sie die ältere Camera API verwenden, nehmen Sie Bilder im ImageFormat.NV21-Format auf.