Обнаруживайте и отслеживайте объекты с помощью ML Kit на Android

Вы можете использовать ML Kit для обнаружения и отслеживания объектов в последовательных видеокадрах.

При передаче изображения в ML Kit он обнаруживает до пяти объектов на изображении и определяет положение каждого из них. При обнаружении объектов в видеопотоках каждый объект получает уникальный идентификатор, который можно использовать для отслеживания объекта от кадра к кадру. При желании можно включить грубую классификацию объектов, которая присваивает объектам общие описания категорий.

Попробуйте это

Прежде чем начать

  1. В файле build.gradle уровня проекта обязательно включите репозиторий Maven от Google в разделы buildscript и allprojects .
  2. Добавьте зависимости для библиотек ML Kit Android в файл Gradle уровня приложения вашего модуля, который обычно называется app/build.gradle :
    dependencies {
      // ...
    
      implementation 'com.google.mlkit:object-detection:17.0.2'
    
    }

1. Настройте детектор объектов

Для обнаружения и отслеживания объектов сначала создайте экземпляр ObjectDetector и при необходимости укажите любые настройки детектора, которые вы хотите изменить по сравнению со значениями по умолчанию.

  1. Настройте детектор объектов для вашего варианта использования с помощью объекта ObjectDetectorOptions . Вы можете изменить следующие параметры:

    Настройки детектора объектов
    Режим обнаружения STREAM_MODE (по умолчанию) | SINGLE_IMAGE_MODE

    В STREAM_MODE (по умолчанию) детектор объектов работает с малой задержкой, но может выдавать неполные результаты (например, неуказанные ограничивающие рамки или метки категорий) при первых нескольких вызовах детектора. Кроме того, в STREAM_MODE детектор присваивает объектам идентификаторы отслеживания, которые можно использовать для отслеживания объектов в кадрах. Используйте этот режим, если требуется отслеживать объекты или когда важна малая задержка, например, при обработке видеопотоков в реальном времени.

    В SINGLE_IMAGE_MODE детектор объектов возвращает результат после определения ограничивающего прямоугольника объекта. Если также включена классификация, результат возвращается после того, как будут доступны ограничивающий прямоугольник и метка категории. В результате задержка обнаружения потенциально увеличивается. Кроме того, в SINGLE_IMAGE_MODE идентификаторы отслеживания не назначаются. Используйте этот режим, если задержка не критична и вы не хотите иметь дело с частичными результатами.

    Обнаружение и отслеживание нескольких объектов false (по умолчанию) | true

    Обнаруживать и отслеживать до пяти объектов или только наиболее заметный объект (по умолчанию).

    Классифицировать объекты false (по умолчанию) | true

    Классифицировать обнаруженные объекты по грубым категориям. При включении детектор объектов классифицирует объекты по следующим категориям: модные товары, продукты питания, товары для дома, места и растения.

    API обнаружения и отслеживания объектов оптимизирован для двух основных вариантов использования:

    • Обнаружение и отслеживание в реальном времени наиболее заметного объекта в видоискателе камеры.
    • Обнаружение нескольких объектов на статическом изображении.

    Чтобы настроить API для этих вариантов использования:

    Котлин

    // Live detection and tracking
    val options = ObjectDetectorOptions.Builder()
            .setDetectorMode(ObjectDetectorOptions.STREAM_MODE)
            .enableClassification()  // Optional
            .build()
    
    // Multiple object detection in static images
    val options = ObjectDetectorOptions.Builder()
            .setDetectorMode(ObjectDetectorOptions.SINGLE_IMAGE_MODE)
            .enableMultipleObjects()
            .enableClassification()  // Optional
            .build()

    Ява

    // Live detection and tracking
    ObjectDetectorOptions options =
            new ObjectDetectorOptions.Builder()
                    .setDetectorMode(ObjectDetectorOptions.STREAM_MODE)
                    .enableClassification()  // Optional
                    .build();
    
    // Multiple object detection in static images
    ObjectDetectorOptions options =
            new ObjectDetectorOptions.Builder()
                    .setDetectorMode(ObjectDetectorOptions.SINGLE_IMAGE_MODE)
                    .enableMultipleObjects()
                    .enableClassification()  // Optional
                    .build();
  2. Получите экземпляр ObjectDetector :

    Котлин

    val objectDetector = ObjectDetection.getClient(options)

    Ява

    ObjectDetector objectDetector = ObjectDetection.getClient(options);

2. Подготовьте входное изображение.

Для обнаружения и отслеживания объектов передайте изображения в метод process() экземпляра ObjectDetector .

Детектор объектов работает непосредственно с Bitmap , NV21 ByteBuffer или YUV_420_888 media.Image . Рекомендуется создавать InputImage из этих источников, если у вас есть прямой доступ к одному из них. Если вы создаете InputImage из других источников, мы выполним преобразование автоматически, и это может быть менее эффективно.

Для каждого кадра видео или изображения в последовательности выполните следующие действия:

Вы можете создать объект InputImage из разных источников, каждый из которых описан ниже.

Использование media.Image

Чтобы создать объект InputImage из объекта media.Image , например, при захвате изображения с камеры устройства, передайте объект media.Image и поворот изображения в InputImage.fromMediaImage() .

Если вы используете библиотеку CameraX , классы OnImageCapturedListener и ImageAnalysis.Analyzer рассчитывают значение поворота автоматически.

Котлин

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Ява

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Если вы не используете библиотеку камеры, которая вычисляет угол поворота изображения, вы можете рассчитать его на основе угла поворота устройства и ориентации датчика камеры в устройстве:

Котлин

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Ява

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Затем передайте объект media.Image и значение угла поворота в InputImage.fromMediaImage() :

Котлин

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Использование URI файла

Чтобы создать объект InputImage из URI файла, передайте контекст приложения и URI файла методу InputImage.fromFilePath() . Это полезно при использовании намерения ACTION_GET_CONTENT , чтобы предложить пользователю выбрать изображение из приложения-галереи.

Котлин

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Использование ByteBuffer или ByteArray

Чтобы создать объект InputImage из ByteBuffer или ByteArray , сначала вычислите угол поворота изображения, как описано ранее для ввода media.Image . Затем создайте объект InputImage с буфером или массивом, а также с указанием высоты, ширины, формата кодировки цвета и угла поворота изображения:

Котлин

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Ява

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Использование Bitmap

Чтобы создать объект InputImage из объекта Bitmap , сделайте следующее объявление:

Котлин

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Изображение представлено объектом Bitmap вместе с градусами поворота.

3. Обработайте изображение.

Передайте изображение методу process() :

Котлин

objectDetector.process(image)
    .addOnSuccessListener { detectedObjects ->
        // Task completed successfully
        // ...
    }
    .addOnFailureListener { e ->
        // Task failed with an exception
        // ...
    }

Ява

objectDetector.process(image)
    .addOnSuccessListener(
        new OnSuccessListener<List<DetectedObject>>() {
            @Override
            public void onSuccess(List<DetectedObject> detectedObjects) {
                // Task completed successfully
                // ...
            }
        })
    .addOnFailureListener(
        new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

4. Получите информацию об обнаруженных объектах

Если вызов process() завершается успешно, список DetectedObject передается прослушивателю успешного завершения.

Каждый DetectedObject содержит следующие свойства:

Ограничительная рамка Rect , указывающий положение объекта на изображении.
Идентификатор отслеживания Целое число, идентифицирующее объект на изображениях. Значение NULL в SINGLE_IMAGE_MODE.
Этикетки
Описание этикетки Текстовое описание метки. Это будет одна из строковых констант, определённых в PredefinedCategory .
Индекс этикеток Индекс метки среди всех меток, поддерживаемых классификатором. Это будет одна из целочисленных констант, определённых в PredefinedCategory .
Уверенность в этикетке Значение достоверности классификации объекта.

Котлин

for (detectedObject in detectedObjects) {
    val boundingBox = detectedObject.boundingBox
    val trackingId = detectedObject.trackingId
    for (label in detectedObject.labels) {
        val text = label.text
        if (PredefinedCategory.FOOD == text) {
            ...
        }
        val index = label.index
        if (PredefinedCategory.FOOD_INDEX == index) {
            ...
        }
        val confidence = label.confidence
    }
}

Ява

// The list of detected objects contains one item if multiple
// object detection wasn't enabled.
for (DetectedObject detectedObject : detectedObjects) {
    Rect boundingBox = detectedObject.getBoundingBox();
    Integer trackingId = detectedObject.getTrackingId();
    for (Label label : detectedObject.getLabels()) {
        String text = label.getText();
        if (PredefinedCategory.FOOD.equals(text)) {
            ...
        }
        int index = label.getIndex();
        if (PredefinedCategory.FOOD_INDEX == index) {
            ...
        }
        float confidence = label.getConfidence();
    }
}

Обеспечение отличного пользовательского опыта

Для обеспечения наилучшего пользовательского опыта следуйте этим рекомендациям в своем приложении:

  • Успешность обнаружения объектов зависит от их визуальной сложности. Для обнаружения объектов с небольшим количеством визуальных характеристик может потребоваться, чтобы они занимали большую часть изображения. Необходимо предоставить пользователям рекомендации по сбору входных данных, которые хорошо подходят для объектов, которые вы хотите обнаружить.
  • Если при использовании классификации вы хотите обнаружить объекты, которые не попадают однозначно в поддерживаемые категории, реализуйте специальную обработку для неизвестных объектов.

Также ознакомьтесь с демонстрационным приложением ML Kit Material Design и коллекцией шаблонов Material Design для функций на базе машинного обучения .

Повышение производительности

Если вы хотите использовать обнаружение объектов в приложении реального времени, следуйте этим рекомендациям для достижения наилучшей частоты кадров:

  • При использовании потокового режима в приложении реального времени не используйте функцию обнаружения нескольких объектов, так как большинство устройств не смогут обеспечить адекватную частоту кадров.

  • Отключите классификацию, если она вам не нужна.

  • Если вы используете API Camera или camera2 , ограничивайте количество вызовов детектора. Если во время работы детектора появляется новый видеокадр, удалите его. См. пример класса VisionProcessorBase в примере приложения для быстрого старта.
  • Если вы используете API CameraX , убедитесь, что стратегия обратного давления установлена ​​на значение по умолчанию ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST . Это гарантирует, что для анализа будет отправлено только одно изображение за раз. Если во время работы анализатора будут получены дополнительные изображения, они будут автоматически удалены и не будут поставлены в очередь на отправку. После закрытия анализируемого изображения вызовом ImageProxy.close() будет отправлено следующее по времени изображение.
  • Если вы используете выходные данные детектора для наложения графики на входное изображение, сначала получите результат из ML Kit, а затем визуализируйте изображение и наложение за один шаг. В этом случае визуализация на поверхности дисплея выполняется только один раз для каждого входного кадра. Пример см. в классах CameraSourcePreview и GraphicOverlay в примере приложения для быстрого старта.
  • Если вы используете API Camera2, снимайте изображения в формате ImageFormat.YUV_420_888 . Если вы используете более старую версию API Camera, снимайте изображения в формате ImageFormat.NV21 .