ML Kit menyediakan dua SDK yang dioptimalkan untuk deteksi postur.
Nama SDK | pose-detection | pose-detection-accurate |
---|---|---|
Penerapan | Kode dan aset ditautkan secara statis ke aplikasi Anda pada waktu build. | Kode dan aset ditautkan secara statis ke aplikasi Anda pada waktu build. |
Dampak ukuran aplikasi (termasuk kode dan aset) | ~10,1 MB | ~13,3 MB |
Performa | Pixel 3XL: ~30FPS | Pixel 3XL: ~23 FPS dengan CPU, ~30 FPS dengan GPU |
Cobalah
- Coba aplikasi contoh untuk melihat contoh penggunaan API ini.
Sebelum memulai
- Dalam file
build.gradle
level project, pastikan Anda memasukkan repositori Maven Google di bagianbuildscript
danallprojects
. Tambahkan dependensi untuk library Android ML Kit ke file gradle level aplikasi modul Anda, biasanya
app/build.gradle
:dependencies { // If you want to use the base sdk implementation 'com.google.mlkit:pose-detection:18.0.0-beta5' // If you want to use the accurate sdk implementation 'com.google.mlkit:pose-detection-accurate:18.0.0-beta5' }
1. Membuat instance PoseDetector
Opsi PoseDetector
Untuk mendeteksi pose dalam gambar, buat instance PoseDetector
terlebih dahulu dan
tentukan setelan detektor secara opsional.
Mode deteksi
PoseDetector
beroperasi dalam dua mode deteksi. Pastikan Anda memilih yang sesuai dengan kasus penggunaan Anda.
STREAM_MODE
(default)- Detektor postur akan mendeteksi orang yang paling terlihat dalam gambar terlebih dahulu, lalu menjalankan deteksi postur. Dalam frame berikutnya, langkah deteksi orang tidak akan dilakukan kecuali jika orang tersebut tertutup atau tidak lagi terdeteksi dengan keyakinan tinggi. Detektor postur akan berupaya melacak orang yang paling terlihat dan menampilkan posturnya di setiap inferensi. Tindakan ini mengurangi latensi dan memperlancar deteksi. Gunakan mode ini saat Anda ingin mendeteksi pose dalam streaming video.
SINGLE_IMAGE_MODE
- Detektor pose akan mendeteksi orang, lalu menjalankan deteksi pose. Langkah deteksi orang akan berjalan untuk setiap gambar, sehingga latensi akan lebih tinggi, dan tidak ada pelacakan orang. Gunakan mode ini saat menggunakan deteksi pose pada gambar statis atau saat pelacakan tidak diinginkan.
Konfigurasi hardware
PoseDetector
mendukung beberapa konfigurasi hardware untuk mengoptimalkan
performa:
CPU
: menjalankan detektor hanya dengan menggunakan CPUCPU_GPU
: menjalankan detektor menggunakan CPU dan GPU
Saat membuat opsi detektor, Anda dapat menggunakan API
setPreferredHardwareConfigs
untuk mengontrol pemilihan hardware. Secara default,
semua konfigurasi hardware ditetapkan sebagai pilihan.
ML Kit akan mempertimbangkan ketersediaan, stabilitas, kebenaran, dan latensi setiap konfigurasi, lalu memilih yang terbaik dari konfigurasi pilihan. Jika tidak ada konfigurasi pilihan yang berlaku, konfigurasi CPU
akan digunakan secara otomatis sebagai penggantian. ML Kit akan melakukan pemeriksaan ini dan persiapan terkait secara
non-blocking sebelum mengaktifkan akselerasi apa pun, sehingga kemungkinan besar
pengguna Anda menjalankan detektor untuk pertama kalinya, detektor akan menggunakan CPU
. Setelah semua
persiapan selesai, konfigurasi terbaik akan digunakan dalam operasi berikutnya.
Contoh penggunaan setPreferredHardwareConfigs
:
- Agar ML Kit memilih konfigurasi terbaik, jangan panggil API ini.
- Jika Anda tidak ingin mengaktifkan akselerasi apa pun, teruskan hanya
CPU
. - Jika Anda ingin menggunakan GPU untuk mengurangi beban CPU meskipun GPU mungkin lebih lambat, teruskan
hanya
CPU_GPU
.
Tentukan opsi detektor postur:
Kotlin
// Base pose detector with streaming frames, when depending on the pose-detection sdk val options = PoseDetectorOptions.Builder() .setDetectorMode(PoseDetectorOptions.STREAM_MODE) .build() // Accurate pose detector on static images, when depending on the pose-detection-accurate sdk val options = AccuratePoseDetectorOptions.Builder() .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE) .build()
Java
// Base pose detector with streaming frames, when depending on the pose-detection sdk PoseDetectorOptions options = new PoseDetectorOptions.Builder() .setDetectorMode(PoseDetectorOptions.STREAM_MODE) .build(); // Accurate pose detector on static images, when depending on the pose-detection-accurate sdk AccuratePoseDetectorOptions options = new AccuratePoseDetectorOptions.Builder() .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE) .build();
Terakhir, buat instance PoseDetector
. Teruskan opsi yang Anda tentukan:
Kotlin
val poseDetector = PoseDetection.getClient(options)
Java
PoseDetector poseDetector = PoseDetection.getClient(options);
2. Menyiapkan gambar input
Untuk mendeteksi pose dalam gambar, buat objek InputImage
dari Bitmap
, media.Image
, ByteBuffer
, array byte, atau file di
perangkat. Kemudian, teruskan objek InputImage
ke
PoseDetector
.
Untuk deteksi postur, Anda harus menggunakan gambar dengan dimensi yang berukuran minimal 480x360 piksel. Jika Anda mendeteksi pose secara real time, pengambilan frame pada resolusi minimum ini dapat membantu mengurangi latensi.
Anda dapat membuat objek InputImage
dari berbagai sumber, yang masing-masing langkahnya dijelaskan di bawah.
Menggunakan media.Image
Untuk membuat objek InputImage
dari objek media.Image
, seperti saat Anda mengambil gambar dari kamera perangkat, teruskan objek media.Image
dan rotasi gambar ke InputImage.fromMediaImage()
.
Jika Anda menggunakan library
CameraX, class OnImageCapturedListener
dan
ImageAnalysis.Analyzer
akan menghitung nilai rotasi untuk Anda.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Jika Anda tidak menggunakan library kamera yang memberi derajat rotasi gambar, Anda dapat menghitungnya dari derajat rotasi perangkat dan orientasi sensor kamera pada perangkat:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Kemudian, teruskan objek media.Image
dan nilai derajat rotasi ke InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Menggunakan URI file
Untuk membuat objek InputImage
dari URI file, teruskan konteks aplikasi dan URI file ke
InputImage.fromFilePath()
. Hal ini berguna saat Anda menggunakan intent ACTION_GET_CONTENT
untuk meminta pengguna memilih gambar dari aplikasi galeri mereka.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Menggunakan ByteBuffer
atau ByteArray
Untuk membuat objek InputImage
dari ByteBuffer
atau ByteArray
, pertama-tama hitung derajat rotasi gambar seperti yang dijelaskan sebelumnya untuk input media.Image
.
Kemudian, buat objek InputImage
dengan buffer atau array, beserta tinggi, lebar, format encoding warna, dan derajat rotasi gambar:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Menggunakan Bitmap
Untuk membuat objek InputImage
dari objek Bitmap
, buat deklarasi berikut:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Gambar direpresentasikan oleh objek Bitmap
bersama dengan derajat rotasi.
3. Memproses gambar
Teruskan objek InputImage
yang telah disiapkan ke metode process
PoseDetector
.
Kotlin
Task<Pose> result = poseDetector.process(image) .addOnSuccessListener { results -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<Pose> result = poseDetector.process(image) .addOnSuccessListener( new OnSuccessListener<Pose>() { @Override public void onSuccess(Pose pose) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. Mendapatkan informasi tentang postur yang terdeteksi
Jika seseorang terdeteksi dalam gambar, API deteksi pose akan menampilkan objek Pose
dengan 33 PoseLandmark
.
Jika orang tersebut tidak sepenuhnya berada di dalam gambar, model akan menetapkan koordinat titik penanda yang hilang di luar frame dan memberikan nilai InFrameConfidence yang rendah.
Jika tidak ada orang yang terdeteksi dalam frame, objek Pose
tidak berisi PoseLandmark
.
Kotlin
// Get all PoseLandmarks. If no person was detected, the list will be empty val allPoseLandmarks = pose.getAllPoseLandmarks() // Or get specific PoseLandmarks individually. These will all be null if no person // was detected val leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER) val rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER) val leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW) val rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW) val leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST) val rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST) val leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP) val rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP) val leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE) val rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE) val leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE) val rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE) val leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY) val rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY) val leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX) val rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX) val leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB) val rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB) val leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL) val rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL) val leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX) val rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX) val nose = pose.getPoseLandmark(PoseLandmark.NOSE) val leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER) val leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE) val leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER) val rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER) val rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE) val rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER) val leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR) val rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR) val leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH) val rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH)
Java
// Get all PoseLandmarks. If no person was detected, the list will be empty List<PoseLandmark> allPoseLandmarks = pose.getAllPoseLandmarks(); // Or get specific PoseLandmarks individually. These will all be null if no person // was detected PoseLandmark leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER); PoseLandmark rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER); PoseLandmark leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW); PoseLandmark rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW); PoseLandmark leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST); PoseLandmark rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST); PoseLandmark leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP); PoseLandmark rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP); PoseLandmark leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE); PoseLandmark rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE); PoseLandmark leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE); PoseLandmark rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE); PoseLandmark leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY); PoseLandmark rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY); PoseLandmark leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX); PoseLandmark rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX); PoseLandmark leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB); PoseLandmark rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB); PoseLandmark leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL); PoseLandmark rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL); PoseLandmark leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX); PoseLandmark rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX); PoseLandmark nose = pose.getPoseLandmark(PoseLandmark.NOSE); PoseLandmark leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER); PoseLandmark leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE); PoseLandmark leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER); PoseLandmark rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER); PoseLandmark rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE); PoseLandmark rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER); PoseLandmark leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR); PoseLandmark rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR); PoseLandmark leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH); PoseLandmark rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH);
Tips untuk meningkatkan performa
Kualitas hasil Anda bergantung pada kualitas gambar input:
- Agar ML Kit dapat mendeteksi pose secara akurat, orang dalam gambar harus direpresentasikan oleh data piksel yang memadai; untuk performa terbaik, subjek harus berukuran minimal 256x256 piksel.
- Jika mendeteksi postur dalam aplikasi real-time, Anda mungkin perlu mempertimbangkan dimensi gambar input secara keseluruhan. Gambar yang lebih kecil dapat diproses lebih cepat. Jadi, untuk mengurangi latensi, ambil gambar dengan resolusi yang lebih rendah, tetapi perhatikan persyaratan resolusi di atas dan pastikan subjek menempati gambar seluas mungkin.
- Fokus gambar yang buruk juga dapat memengaruhi akurasi. Jika Anda tidak mendapatkan hasil yang dapat diterima, minta pengguna untuk mengambil ulang gambar.
Jika Anda ingin menggunakan deteksi postur dalam aplikasi real-time, ikuti panduan ini untuk mencapai kecepatan frame terbaik:
- Gunakan SDK deteksi postur dasar dan
STREAM_MODE
. - Pertimbangkan untuk mengambil gambar dengan resolusi lebih rendah. Namun, perhatikan juga persyaratan dimensi gambar API ini.
- Jika Anda menggunakan
API
Camera
ataucamera2
, batasi panggilan ke detektor. Jika frame video baru tersedia saat detektor sedang berjalan, hapus frame tersebut. Lihat classVisionProcessorBase
di aplikasi contoh panduan memulai untuk mengetahui contohnya. - Jika Anda menggunakan API
CameraX
, pastikan strategi tekanan balik disetel ke nilai defaultnyaImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. Hal ini menjamin hanya satu gambar yang akan dikirimkan untuk dianalisis dalam satu waktu. Jika lebih banyak gambar dihasilkan saat penganalisis sibuk, gambar tersebut akan otomatis dihentikan dan tidak dimasukkan dalam antrean untuk pengiriman. Setelah gambar yang dianalisis ditutup dengan memanggil ImageProxy.close(), gambar terbaru berikutnya akan dikirimkan. - Jika Anda menggunakan output detektor untuk menempatkan grafis pada gambar input, pertama-tama dapatkan hasilnya dari ML Kit, lalu render gambar dan tempatkan grafis dalam satu langkah. Dengan demikian, Anda hanya merender ke permukaan tampilan sekali untuk setiap frame input. Lihat class
CameraSourcePreview
danGraphicOverlay
dalam aplikasi contoh panduan memulai untuk mengetahui contohnya. - Jika Anda menggunakan Camera2 API, ambil gambar dalam format
ImageFormat.YUV_420_888
. Jika Anda menggunakan Camera API versi lama, ambil gambar dalam formatImageFormat.NV21
.
Langkah berikutnya
- Untuk mempelajari cara menggunakan penanda postur untuk mengklasifikasikan postur, lihat Tips Klasifikasi Postur.