Android এ ML কিট সহ সেলফি সেগমেন্টেশন

এমএল কিট সেলফি সেগমেন্টেশনের জন্য একটি অপ্টিমাইজড এসডিকে প্রদান করে।

সেলফি সেগমেন্টার অ্যাসেটগুলি তৈরির সময় আপনার অ্যাপের সাথে স্ট্যাটিক্যালি লিঙ্ক করা থাকে। এটি আপনার অ্যাপ ডাউনলোডের আকার প্রায় 4.5MB বৃদ্ধি করবে এবং API ল্যাটেন্সি 25ms থেকে 65ms পর্যন্ত হতে পারে ইনপুট ছবির আকারের উপর নির্ভর করে, যা Pixel 4-তে পরিমাপ করা হয়েছে।

চেষ্টা করে দেখো

শুরু করার আগে

  1. আপনার প্রজেক্ট-লেভেল build.gradle ফাইলে, আপনার buildscript এবং allprojects উভয় বিভাগেই Google এর Maven রিপোজিটরি অন্তর্ভুক্ত করতে ভুলবেন না।
  2. আপনার মডিউলের অ্যাপ-লেভেল গ্রেডল ফাইলে ML কিট অ্যান্ড্রয়েড লাইব্রেরির জন্য নির্ভরতা যোগ করুন, যা সাধারণত app/build.gradle হয়:
dependencies {
  implementation 'com.google.mlkit:segmentation-selfie:16.0.0-beta6'
}

১. সেগমেন্টারের একটি উদাহরণ তৈরি করুন

সেগমেন্টার বিকল্পগুলি

একটি ছবিতে সেগমেন্টেশন করতে, প্রথমে নিম্নলিখিত বিকল্পগুলি নির্দিষ্ট করে Segmenter একটি উদাহরণ তৈরি করুন।

ডিটেক্টর মোড

Segmenter দুটি মোডে কাজ করে। আপনার ব্যবহারের ক্ষেত্রে মেলে এমন একটি বেছে নেওয়ার বিষয়ে নিশ্চিত হন।

STREAM_MODE (default)

এই মোডটি ভিডিও বা ক্যামেরা থেকে ফ্রেম স্ট্রিম করার জন্য ডিজাইন করা হয়েছে। এই মোডে, সেগমেন্টার পূর্ববর্তী ফ্রেম থেকে ফলাফলগুলি ব্যবহার করে মসৃণ সেগমেন্টেশন ফলাফল প্রদান করবে।

SINGLE_IMAGE_MODE

এই মোডটি এমন একক ছবির জন্য ডিজাইন করা হয়েছে যা সম্পর্কিত নয়। এই মোডে, সেগমেন্টার প্রতিটি ছবি স্বাধীনভাবে প্রক্রিয়া করবে, ফ্রেমের উপর কোনও স্মুথিং ছাড়াই।

কাঁচা আকারের মাস্ক সক্ষম করুন

সেগমেন্টারকে মডেল আউটপুট আকারের সাথে মেলে এমন কাঁচা আকারের মাস্কটি ফেরত দিতে বলে।

কাঁচা মাস্কের আকার (যেমন ২৫৬x২৫৬) সাধারণত ইনপুট ছবির আকারের চেয়ে ছোট হয়। এই বিকল্পটি সক্রিয় করার সময় মাস্কের আকার জানতে অনুগ্রহ করে SegmentationMask#getWidth() এবং SegmentationMask#getHeight() এ কল করুন।

এই বিকল্পটি নির্দিষ্ট না করেই, সেগমেন্টার ইনপুট ছবির আকারের সাথে মেলে কাঁচা মাস্কটিকে পুনরায় স্কেল করবে। আপনি যদি কাস্টমাইজড রিস্কেলিং লজিক প্রয়োগ করতে চান বা আপনার ব্যবহারের ক্ষেত্রে রিস্কেলিং প্রয়োজন না হয় তবে এই বিকল্পটি ব্যবহার করার কথা বিবেচনা করুন।

সেগমেন্টার বিকল্পগুলি নির্দিষ্ট করুন:

কোটলিন

val options =
        SelfieSegmenterOptions.Builder()
            .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE)
            .enableRawSizeMask()
            .build()

জাভা

SelfieSegmenterOptions options =
        new SelfieSegmenterOptions.Builder()
            .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE)
            .enableRawSizeMask()
            .build();

Segmenter এর একটি উদাহরণ তৈরি করুন। আপনার নির্দিষ্ট করা বিকল্পগুলি পাস করুন:

কোটলিন

val segmenter = Segmentation.getClient(options)

জাভা

Segmenter segmenter = Segmentation.getClient(options);

2. ইনপুট ইমেজ প্রস্তুত করুন

একটি ছবিতে সেগমেন্টেশন করতে, Bitmap , media.Image , ByteBuffer , বাইট অ্যারে, অথবা ডিভাইসের একটি ফাইল থেকে একটি InputImage অবজেক্ট তৈরি করুন।

আপনি বিভিন্ন উৎস থেকে একটি InputImage অবজেক্ট তৈরি করতে পারেন, প্রতিটি নীচে ব্যাখ্যা করা হয়েছে।

একটি media.Image ব্যবহার করা হচ্ছে। চিত্র

একটি media.Image অবজেক্ট থেকে একটি InputImage অবজেক্ট তৈরি করতে, যেমন যখন আপনি একটি ডিভাইসের ক্যামেরা থেকে একটি ছবি ক্যাপচার করেন, তখন media.Image অবজেক্ট এবং ছবির ঘূর্ণন InputImage.fromMediaImage() এ পাস করুন।

আপনি যদি CameraX লাইব্রেরি ব্যবহার করেন, তাহলে OnImageCapturedListener এবং ImageAnalysis.Analyzer ক্লাসগুলি আপনার জন্য ঘূর্ণন মান গণনা করবে।

কোটলিন

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

জাভা

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

যদি আপনি এমন কোনও ক্যামেরা লাইব্রেরি ব্যবহার না করেন যা আপনাকে ছবির ঘূর্ণন ডিগ্রী দেয়, তাহলে আপনি ডিভাইসের ঘূর্ণন ডিগ্রী এবং ডিভাইসে ক্যামেরা সেন্সরের ওরিয়েন্টেশন থেকে এটি গণনা করতে পারেন:

কোটলিন

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

জাভা

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

তারপর, media.Image অবজেক্ট এবং ঘূর্ণন ডিগ্রি মান InputImage.fromMediaImage() এ পাস করুন:

কোটলিন

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

একটি ফাইল URI ব্যবহার করা হচ্ছে

একটি ফাইল URI থেকে একটি InputImage অবজেক্ট তৈরি করতে, অ্যাপের প্রসঙ্গটি পাস করুন এবং URI ফাইলটি InputImage.fromFilePath() এ দিন। যখন আপনি ACTION_GET_CONTENT ইন্টেন্ট ব্যবহার করে ব্যবহারকারীকে তাদের গ্যালারি অ্যাপ থেকে একটি ছবি নির্বাচন করতে অনুরোধ করেন তখন এটি কার্যকর।

কোটলিন

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

একটি ByteBuffer বা ByteArray ব্যবহার করা

ByteBuffer অথবা ByteArray থেকে InputImage অবজেক্ট তৈরি করতে, প্রথমে media.Image ইনপুটের জন্য পূর্বে বর্ণিত চিত্রের ঘূর্ণন ডিগ্রি গণনা করুন। তারপর, বাফার বা অ্যারে দিয়ে InputImage অবজেক্ট তৈরি করুন, ছবির উচ্চতা, প্রস্থ, রঙ এনকোডিং ফর্ম্যাট এবং ঘূর্ণন ডিগ্রি সহ:

কোটলিন

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

জাভা

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Bitmap ব্যবহার করা

একটি Bitmap অবজেক্ট থেকে একটি InputImage অবজেক্ট তৈরি করতে, নিম্নলিখিত ঘোষণাটি করুন:

কোটলিন

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

ছবিটি ঘূর্ণন ডিগ্রি সহ একটি Bitmap বস্তু দ্বারা উপস্থাপিত হয়।

৩. ছবিটি প্রক্রিয়া করুন

প্রস্তুত InputImage অবজেক্টটি Segmenter এর process পদ্ধতিতে পাস করুন।

কোটলিন

Task<SegmentationMask> result = segmenter.process(image)
       .addOnSuccessListener { results ->
           // Task completed successfully
           // ...
       }
       .addOnFailureListener { e ->
           // Task failed with an exception
           // ...
       }

জাভা

Task<SegmentationMask> result =
        segmenter.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<SegmentationMask>() {
                            @Override
                            public void onSuccess(SegmentationMask mask) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

৪. সেগমেন্টেশনের ফলাফল পান

আপনি নিম্নরূপে সেগমেন্টেশন ফলাফল পেতে পারেন:

কোটলিন

val mask = segmentationMask.getBuffer()
val maskWidth = segmentationMask.getWidth()
val maskHeight = segmentationMask.getHeight()

for (val y = 0; y < maskHeight; y++) {
  for (val x = 0; x < maskWidth; x++) {
    // Gets the confidence of the (x,y) pixel in the mask being in the foreground.
    val foregroundConfidence = mask.getFloat()
  }
}

জাভা

ByteBuffer mask = segmentationMask.getBuffer();
int maskWidth = segmentationMask.getWidth();
int maskHeight = segmentationMask.getHeight();

for (int y = 0; y < maskHeight; y++) {
  for (int x = 0; x < maskWidth; x++) {
    // Gets the confidence of the (x,y) pixel in the mask being in the foreground.
    float foregroundConfidence = mask.getFloat();
  }
}

সেগমেন্টেশন ফলাফল কীভাবে ব্যবহার করবেন তার একটি সম্পূর্ণ উদাহরণের জন্য, অনুগ্রহ করে ML Kit কুইকস্টার্ট নমুনাটি দেখুন।

কর্মক্ষমতা উন্নত করার টিপস

আপনার ফলাফলের মান ইনপুট ছবির মানের উপর নির্ভর করে:

  • ML Kit-এর সঠিক সেগমেন্টেশন ফলাফল পেতে হলে, ছবিটি কমপক্ষে ২৫৬x২৫৬ পিক্সেলের হওয়া উচিত।
  • ছবির দুর্বল ফোকাসও নির্ভুলতার উপর প্রভাব ফেলতে পারে। যদি আপনি গ্রহণযোগ্য ফলাফল না পান, তাহলে ব্যবহারকারীকে ছবিটি পুনরায় ধারণ করতে বলুন।

যদি আপনি একটি রিয়েল-টাইম অ্যাপ্লিকেশনে সেগমেন্টেশন ব্যবহার করতে চান, তাহলে সেরা ফ্রেম রেট অর্জনের জন্য এই নির্দেশিকাগুলি অনুসরণ করুন:

  • STREAM_MODE ব্যবহার করুন।
  • কম রেজোলিউশনে ছবি তোলার কথা বিবেচনা করুন। তবে, এই API-এর ছবির মাত্রার প্রয়োজনীয়তাগুলিও মনে রাখবেন।
  • raw size mask অপশনটি সক্রিয় করার এবং সমস্ত rescaling logic একসাথে একত্রিত করার কথা বিবেচনা করুন। উদাহরণস্বরূপ, API কে প্রথমে আপনার ইনপুট ছবির আকারের সাথে মেলে মাস্কটি পুনরায় স্কেল করার অনুমতি দেওয়ার পরিবর্তে এবং তারপরে আপনি প্রদর্শনের জন্য View size এর সাথে মেলে আবার স্কেল করার পরিবর্তে, কেবল raw size মাস্কটি অনুরোধ করুন এবং এই দুটি ধাপ একত্রিত করুন।
  • যদি আপনি Camera অথবা camera2 API ব্যবহার করেন, তাহলে ডিটেক্টরে থ্রোটল কল আসবে। ডিটেক্টর চলাকালীন যদি একটি নতুন ভিডিও ফ্রেম পাওয়া যায়, তাহলে ফ্রেমটি ফেলে দিন। উদাহরণের জন্য কুইকস্টার্ট নমুনা অ্যাপে VisionProcessorBase ক্লাসটি দেখুন।
  • যদি আপনি CameraX API ব্যবহার করেন, তাহলে নিশ্চিত করুন যে ব্যাকপ্রেসার কৌশলটি তার ডিফল্ট মান ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST তে সেট করা আছে। এটি নিশ্চিত করে যে একবারে বিশ্লেষণের জন্য শুধুমাত্র একটি ছবি সরবরাহ করা হবে। বিশ্লেষক ব্যস্ত থাকাকালীন যদি আরও ছবি তৈরি করা হয়, তাহলে সেগুলি স্বয়ংক্রিয়ভাবে বাদ দেওয়া হবে এবং সরবরাহের জন্য সারিবদ্ধ করা হবে না। ImageProxy.close() কল করে বিশ্লেষণ করা ছবিটি বন্ধ হয়ে গেলে, পরবর্তী সর্বশেষ ছবিটি সরবরাহ করা হবে।
  • যদি আপনি ইনপুট ছবিতে গ্রাফিক্স ওভারলে করার জন্য ডিটেক্টরের আউটপুট ব্যবহার করেন, তাহলে প্রথমে ML Kit থেকে ফলাফলটি পান, তারপর ছবিটি রেন্ডার করুন এবং এক ধাপে ওভারলে করুন। এটি প্রতিটি ইনপুট ফ্রেমের জন্য শুধুমাত্র একবার ডিসপ্লে সারফেসে রেন্ডার করে। উদাহরণের জন্য কুইকস্টার্ট নমুনা অ্যাপে CameraSourcePreview এবং GraphicOverlay ক্লাসগুলি দেখুন।
  • যদি আপনি Camera2 API ব্যবহার করেন, তাহলে ImageFormat.YUV_420_888 ফর্ম্যাটে ছবি তুলুন। যদি আপনি পুরোনো ক্যামেরা API ব্যবহার করেন, তাহলে ImageFormat.NV21 ফর্ম্যাটে ছবি তুলুন।