ML Kit, selfie segmentasyonu için optimize edilmiş bir SDK sağlar.
Selfie Segmenter öğeleri, derleme sırasında uygulamanıza statik olarak bağlanır. Bu, uygulama indirme boyutunuzu yaklaşık 4,5 MB artırır ve API gecikmesi, Pixel 4'te ölçüldüğü üzere giriş resmi boyutuna bağlı olarak 25 ms ile 65 ms arasında değişebilir.
Deneyin
- Bu API'nin kullanımına dair bir örnek görmek için örnek uygulamayı inceleyin.
Başlamadan önce
- Proje düzeyindeki
build.gradle
dosyanızda, Google'ın Maven deposunu hembuildscript
hem deallprojects
bölümüne eklediğinizden emin olun. - ML Kit Android kitaplıklarının bağımlılıklarını, modülünüzün uygulama düzeyindeki Gradle dosyasına (genellikle
app/build.gradle
) ekleyin:
dependencies {
implementation 'com.google.mlkit:segmentation-selfie:16.0.0-beta6'
}
1. Segmenter örneği oluşturma
Segmenter seçenekleri
Bir resimde segmentasyon yapmak için önce aşağıdaki seçenekleri belirterek Segmenter
örneği oluşturun.
Algılayıcı Modu
Segmenter
iki modda çalışır. Kullanım alanınıza uygun olanı seçtiğinizden emin olun.
STREAM_MODE (default)
Bu mod, videodan veya kameradan kareler yayınlamak için tasarlanmıştır. Bu modda, segmentleyici daha sorunsuz segmentasyon sonuçları döndürmek için önceki karelerdeki sonuçlardan yararlanır.
SINGLE_IMAGE_MODE
Bu mod, birbiriyle ilişkili olmayan tek resimler için tasarlanmıştır. Bu modda segmentleyici, her resmi bağımsız olarak işler ve kareler arasında yumuşatma yapmaz.
Ham boyut maskesini etkinleştirme
Segmenter'dan, model çıkış boyutuyla eşleşen ham boyut maskesini döndürmesini ister.
Ham maske boyutu (ör. 256x256) genellikle giriş resmi boyutundan küçüktür. Bu seçeneği etkinleştirirken maske boyutunu öğrenmek için lütfen SegmentationMask#getWidth()
ve SegmentationMask#getHeight()
numaralarını arayın.
Bu seçenek belirtilmediğinde, segmentleyici ham maskeyi giriş resmi boyutuna uyacak şekilde yeniden ölçeklendirir. Özelleştirilmiş yeniden ölçeklendirme mantığı uygulamak istiyorsanız veya kullanım alanınız için yeniden ölçeklendirme gerekmiyorsa bu seçeneği kullanabilirsiniz.
Segmentleyici seçeneklerini belirtin:
Kotlin
val options = SelfieSegmenterOptions.Builder() .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE) .enableRawSizeMask() .build()
Java
SelfieSegmenterOptions options = new SelfieSegmenterOptions.Builder() .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE) .enableRawSizeMask() .build();
Segmenter
örneği oluşturun. Belirttiğiniz seçenekleri iletin:
Kotlin
val segmenter = Segmentation.getClient(options)
Java
Segmenter segmenter = Segmentation.getClient(options);
2. Giriş resmini hazırlama
Bir resimde segmentasyon gerçekleştirmek için InputImage
, Bitmap
, media.Image
, ByteBuffer
, bayt dizisi veya cihazdaki bir dosyadan InputImage
nesnesi oluşturun.
Farklı kaynaklardan InputImage
nesnesi oluşturabilirsiniz. Her biri aşağıda açıklanmıştır.
media.Image
kullanma
Bir media.Image
nesnesinden InputImage
nesnesi oluşturmak için (ör. bir cihazın kamerasından resim yakaladığınızda) media.Image
nesnesini ve resmin dönüşünü InputImage.fromMediaImage()
'e iletin.
CameraX kitaplığını kullanıyorsanız OnImageCapturedListener
ve
ImageAnalysis.Analyzer
sınıfları, sizin için döndürme değerini hesaplar.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Resmin dönüş derecesini veren bir kamera kitaplığı kullanmıyorsanız, cihazın dönüş derecesi ve cihazdaki kamera sensörünün yönlendirmesinden yararlanarak dönüş derecesini hesaplayabilirsiniz:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Ardından, media.Image
nesnesini ve dönüş derecesi değerini InputImage.fromMediaImage()
'ye iletin:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Dosya URI'si kullanma
Dosya URI'sinden InputImage
nesnesi oluşturmak için uygulama bağlamını ve dosya URI'sini InputImage.fromFilePath()
'ye iletin. Bu, kullanıcıdan galeri uygulamasından bir resim seçmesini istemek için ACTION_GET_CONTENT
amacını kullandığınızda yararlıdır.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
ByteBuffer
veya ByteArray
kullanma
ByteBuffer
veya ByteArray
öğesinden InputImage
nesnesi oluşturmak için öncelikle media.Image
girişi için daha önce açıklandığı gibi görüntü döndürme derecesini hesaplayın.
Ardından, arabellek veya diziyle birlikte resmin yüksekliği, genişliği, renk kodlama biçimi ve döndürme derecesiyle InputImage
nesnesini oluşturun:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Bitmap
kullanma
Bitmap
nesnesinden InputImage
nesnesi oluşturmak için aşağıdaki bildirimi yapın:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Resim, döndürme dereceleriyle birlikte bir Bitmap
nesnesiyle gösterilir.
3. Resmi işleme
Hazırlanan InputImage
nesnesini Segmenter
öğesinin process
yöntemine iletin.
Kotlin
Task<SegmentationMask> result = segmenter.process(image) .addOnSuccessListener { results -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<SegmentationMask> result = segmenter.process(image) .addOnSuccessListener( new OnSuccessListener<SegmentationMask>() { @Override public void onSuccess(SegmentationMask mask) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. Segmentasyon sonucunu alma
Segmentasyon sonucunu aşağıdaki şekilde alabilirsiniz:
Kotlin
val mask = segmentationMask.getBuffer() val maskWidth = segmentationMask.getWidth() val maskHeight = segmentationMask.getHeight() for (val y = 0; y < maskHeight; y++) { for (val x = 0; x < maskWidth; x++) { // Gets the confidence of the (x,y) pixel in the mask being in the foreground. val foregroundConfidence = mask.getFloat() } }
Java
ByteBuffer mask = segmentationMask.getBuffer(); int maskWidth = segmentationMask.getWidth(); int maskHeight = segmentationMask.getHeight(); for (int y = 0; y < maskHeight; y++) { for (int x = 0; x < maskWidth; x++) { // Gets the confidence of the (x,y) pixel in the mask being in the foreground. float foregroundConfidence = mask.getFloat(); } }
Segmentasyon sonuçlarının nasıl kullanılacağına dair tam bir örnek için lütfen ML Kit hızlı başlangıç örneğine bakın.
Performansı artırmaya yönelik ipuçları
Sonuçlarınızın kalitesi, giriş resminin kalitesine bağlıdır:
- ML Kit'in doğru bir segmentasyon sonucu elde etmesi için resim en az 256x256 piksel olmalıdır.
- Resmin iyi odaklanmaması da doğruluğu etkileyebilir. Kabul edilebilir sonuçlar almazsanız kullanıcıdan resmi yeniden çekmesini isteyin.
Segmentasyonu gerçek zamanlı bir uygulamada kullanmak istiyorsanız en iyi kare hızlarını elde etmek için aşağıdaki yönergeleri uygulayın:
STREAM_MODE
e-posta adresini kullanın.- Görüntüleri daha düşük çözünürlükte çekmeyi deneyin. Ancak bu API'nin resim boyutu koşullarını da göz önünde bulundurun.
- Ham boyut maskesi seçeneğini etkinleştirmeyi ve tüm yeniden ölçeklendirme mantığını birleştirmeyi düşünebilirsiniz. Örneğin, API'nin önce maskeyi giriş resminizin boyutuna uyacak şekilde yeniden ölçeklendirmesine ve ardından maskeyi görüntüleme için görünüm boyutuna uyacak şekilde tekrar yeniden ölçeklendirmenize izin vermek yerine, yalnızca ham boyutlu maskeyi isteyin ve bu iki adımı tek bir adımda birleştirin.
Camera
veyacamera2
API'sini kullanıyorsanız dedektöre yapılan çağrıları sınırlayın. Dedektör çalışırken yeni bir video karesi kullanılabilir hale gelirse kareyi bırakın. Örnek için hızlı başlangıç örnek uygulamasındakiVisionProcessorBase
sınıfına bakın.CameraX
API'sini kullanıyorsanız geri basınç stratejisinin varsayılan değerine ayarlandığından emin olunImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. Bu, analiz için aynı anda yalnızca bir resmin gönderilmesini sağlar. Analizör meşgulken daha fazla resim üretilirse bunlar otomatik olarak bırakılır ve teslimat için sıraya alınmaz. Analiz edilen görüntü ImageProxy.close() çağrılarak kapatıldığında, en son görüntü teslim edilir.- Giriş resmine grafik yerleştirmek için algılayıcının çıkışını kullanıyorsanız önce ML Kit'ten sonucu alın, ardından resmi tek adımda oluşturun ve yerleştirin. Bu, her giriş karesi için yalnızca bir kez görüntüleme yüzeyinde oluşturulur. Örnek için hızlı başlangıç örnek uygulamasındaki
CameraSourcePreview
veGraphicOverlay
sınıflarına bakın. - Camera2 API'yi kullanıyorsanız
ImageFormat.YUV_420_888
biçiminde resim çekin. Eski Camera API'yi kullanıyorsanız görüntüleriImageFormat.NV21
biçiminde çekin.