Android এ ML কিট সহ সেলফি সেগমেন্টেশন

ML কিট সেলফি সেগমেন্টেশনের জন্য একটি অপ্টিমাইজ করা SDK প্রদান করে।

সেলফি সেগমেন্টার সম্পদগুলি বিল্ড টাইমে আপনার অ্যাপের সাথে স্ট্যাটিকভাবে লিঙ্ক করা হয়। এটি আপনার অ্যাপ ডাউনলোডের আকার প্রায় 4.5MB বাড়িয়ে দেবে এবং Pixel 4 এ পরিমাপ করা ইনপুট চিত্রের আকারের উপর নির্ভর করে API লেটেন্সি 25ms থেকে 65ms হতে পারে।

চেষ্টা করে দেখুন

আপনি শুরু করার আগে

  1. আপনার প্রকল্প-স্তরের build.gradle ফাইলে, আপনার buildscript এবং allprojects উভয় বিভাগেই Google-এর Maven সংগ্রহস্থল অন্তর্ভুক্ত করা নিশ্চিত করুন৷
  2. আপনার মডিউলের অ্যাপ-লেভেল গ্রেডল ফাইলে এমএল কিট অ্যান্ড্রয়েড লাইব্রেরির নির্ভরতা যোগ করুন, যা সাধারণত app/build.gradle হয় :
dependencies {
  implementation 'com.google.mlkit:segmentation-selfie:16.0.0-beta6'
}

1. সেগমেন্টারের একটি উদাহরণ তৈরি করুন

সেগমেন্টার বিকল্প

একটি চিত্রে বিভাজন করতে, প্রথমে নিম্নলিখিত বিকল্পগুলি উল্লেখ করে Segmenter একটি উদাহরণ তৈরি করুন।

ডিটেক্টর মোড

Segmenter দুটি মোডে কাজ করে। আপনার ব্যবহারের ক্ষেত্রে মেলে এমন একটি বেছে নিন তা নিশ্চিত করুন।

STREAM_MODE (default)

এই মোডটি ভিডিও বা ক্যামেরা থেকে ফ্রেম স্ট্রিম করার জন্য ডিজাইন করা হয়েছে। এই মোডে, সেগমেন্টার মসৃণ সেগমেন্টেশন ফলাফল ফিরিয়ে আনতে পূর্ববর্তী ফ্রেমের ফলাফলগুলি লাভ করবে।

SINGLE_IMAGE_MODE

এই মোডটি একক ছবিগুলির জন্য ডিজাইন করা হয়েছে যা সম্পর্কিত নয়৷ এই মোডে, সেগমেন্টার প্রতিটি ছবি স্বাধীনভাবে প্রক্রিয়া করবে, ফ্রেমের উপর কোন মসৃণতা ছাড়াই।

কাঁচা আকারের মাস্ক সক্ষম করুন

সেগমেন্টারকে কাঁচা আকারের মাস্ক ফেরত দিতে বলে যা মডেল আউটপুট আকারের সাথে মেলে।

কাঁচা মুখোশের আকার (যেমন 256x256) সাধারণত ইনপুট চিত্রের আকারের চেয়ে ছোট হয়। এই বিকল্পটি সক্রিয় করার সময় মাস্কের আকার পেতে অনুগ্রহ করে SegmentationMask#getWidth() এবং SegmentationMask#getHeight() এ কল করুন।

এই বিকল্পটি নির্দিষ্ট না করেই, সেগমেন্টার ইনপুট চিত্রের আকারের সাথে মেলে কাঁচা মুখোশটি পুনরায় স্কেল করবে। আপনি যদি কাস্টমাইজড রিস্কেলিং লজিক প্রয়োগ করতে চান বা আপনার ব্যবহারের ক্ষেত্রে রিস্কেলিংয়ের প্রয়োজন নেই তাহলে এই বিকল্পটি ব্যবহার করার কথা বিবেচনা করুন।

সেগমেন্টার বিকল্পগুলি নির্দিষ্ট করুন:

কোটলিন

val options =
        SelfieSegmenterOptions.Builder()
            .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE)
            .enableRawSizeMask()
            .build()

জাভা

SelfieSegmenterOptions options =
        new SelfieSegmenterOptions.Builder()
            .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE)
            .enableRawSizeMask()
            .build();

Segmenter একটি উদাহরণ তৈরি করুন। আপনার নির্দিষ্ট করা বিকল্পগুলি পাস করুন:

কোটলিন

val segmenter = Segmentation.getClient(options)

জাভা

Segmenter segmenter = Segmentation.getClient(options);

2. ইনপুট ইমেজ প্রস্তুত করুন

একটি চিত্রে বিভাজন সঞ্চালন করতে, একটি Bitmap , media.Image ইমেজ , ByteBuffer , বাইট অ্যারে বা ডিভাইসে একটি ফাইল থেকে একটি InputImage অবজেক্ট তৈরি করুন৷

আপনি বিভিন্ন উত্স থেকে একটি InputImage অবজেক্ট তৈরি করতে পারেন, প্রতিটি নীচে ব্যাখ্যা করা হয়েছে৷

একটি media.Image ব্যবহার করে. ইমেজ

একটি media.Image থেকে একটি InputImage অবজেক্ট তৈরি করতে। ইমেজ অবজেক্ট, যেমন আপনি যখন একটি ডিভাইসের ক্যামেরা থেকে একটি ইমেজ ক্যাপচার করেন, তখন media.Image পাস করুন। ইমেজ অবজেক্ট এবং ইমেজের রোটেশন InputImage.fromMediaImage() এ।

আপনি যদি CameraX লাইব্রেরি ব্যবহার করেন, OnImageCapturedListener এবং ImageAnalysis.Analyzer ক্লাসগুলি আপনার জন্য ঘূর্ণন মান গণনা করে৷

কোটলিন

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

জাভা

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

আপনি যদি এমন একটি ক্যামেরা লাইব্রেরি ব্যবহার না করেন যা আপনাকে চিত্রের ঘূর্ণন ডিগ্রী দেয়, আপনি ডিভাইসের ঘূর্ণন ডিগ্রী এবং ডিভাইসে ক্যামেরা সেন্সরের অভিযোজন থেকে এটি গণনা করতে পারেন:

কোটলিন

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

জাভা

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

তারপর, media.Image অবজেক্ট এবং ঘূর্ণন ডিগ্রী মান InputImage.fromMediaImage() এ পাস করুন :

কোটলিন

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

একটি ফাইল ইউআরআই ব্যবহার করে

একটি ফাইল URI থেকে একটি InputImage অবজেক্ট তৈরি করতে, অ্যাপের প্রসঙ্গ এবং ফাইল URIকে InputImage.fromFilePath() এ পাস করুন। এটি উপযোগী যখন আপনি একটি ACTION_GET_CONTENT উদ্দেশ্য ব্যবহার করে ব্যবহারকারীকে তাদের গ্যালারি অ্যাপ থেকে একটি ছবি নির্বাচন করতে অনুরোধ করেন৷

কোটলিন

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

একটি ByteBuffer বা ByteArray ব্যবহার করে

একটি ByteBuffer বা একটি ByteArray থেকে একটি InputImage অবজেক্ট তৈরি করতে, প্রথমে media.Image ইনপুটের জন্য পূর্বে বর্ণিত চিত্রের ঘূর্ণন ডিগ্রি গণনা করুন৷ তারপরে, ছবির উচ্চতা, প্রস্থ, রঙ এনকোডিং বিন্যাস এবং ঘূর্ণন ডিগ্রী সহ বাফার বা অ্যারে সহ InputImage অবজেক্ট তৈরি করুন:

কোটলিন

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

জাভা

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

একটি Bitmap ব্যবহার করে

একটি Bitmap বস্তু থেকে একটি InputImage অবজেক্ট তৈরি করতে, নিম্নলিখিত ঘোষণা করুন:

কোটলিন

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

চিত্রটি ঘূর্ণন ডিগ্রী সহ একটি Bitmap বস্তু দ্বারা উপস্থাপিত হয়।

3. চিত্রটি প্রক্রিয়া করুন

প্রস্তুতকৃত InputImage অবজেক্টটিকে Segmenter process পদ্ধতিতে পাস করুন।

কোটলিন

Task<SegmentationMask> result = segmenter.process(image)
       .addOnSuccessListener { results ->
           // Task completed successfully
           // ...
       }
       .addOnFailureListener { e ->
           // Task failed with an exception
           // ...
       }

জাভা

Task<SegmentationMask> result =
        segmenter.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<SegmentationMask>() {
                            @Override
                            public void onSuccess(SegmentationMask mask) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. বিভাজন ফলাফল পান

আপনি নিম্নলিখিত হিসাবে বিভাজন ফলাফল পেতে পারেন:

কোটলিন

val mask = segmentationMask.getBuffer()
val maskWidth = segmentationMask.getWidth()
val maskHeight = segmentationMask.getHeight()

for (val y = 0; y < maskHeight; y++) {
  for (val x = 0; x < maskWidth; x++) {
    // Gets the confidence of the (x,y) pixel in the mask being in the foreground.
    val foregroundConfidence = mask.getFloat()
  }
}

জাভা

ByteBuffer mask = segmentationMask.getBuffer();
int maskWidth = segmentationMask.getWidth();
int maskHeight = segmentationMask.getHeight();

for (int y = 0; y < maskHeight; y++) {
  for (int x = 0; x < maskWidth; x++) {
    // Gets the confidence of the (x,y) pixel in the mask being in the foreground.
    float foregroundConfidence = mask.getFloat();
  }
}

বিভাজন ফলাফলগুলি কীভাবে ব্যবহার করবেন তার সম্পূর্ণ উদাহরণের জন্য, অনুগ্রহ করে ML কিট কুইকস্টার্ট নমুনাটি দেখুন।

কর্মক্ষমতা উন্নত করার টিপস

আপনার ফলাফলের গুণমান ইনপুট চিত্রের মানের উপর নির্ভর করে:

  • ML Kit একটি সঠিক বিভাজন ফলাফল পেতে, চিত্রটি কমপক্ষে 256x256 পিক্সেল হওয়া উচিত।
  • খারাপ ইমেজ ফোকাস এছাড়াও নির্ভুলতা প্রভাবিত করতে পারে. আপনি গ্রহণযোগ্য ফলাফল না পেলে, ব্যবহারকারীকে ছবিটি পুনরায় ক্যাপচার করতে বলুন।

আপনি যদি রিয়েল-টাইম অ্যাপ্লিকেশনে সেগমেন্টেশন ব্যবহার করতে চান, তাহলে সেরা ফ্রেম রেটগুলি অর্জন করতে এই নির্দেশিকাগুলি অনুসরণ করুন:

  • STREAM_MODE ব্যবহার করুন।
  • কম রেজোলিউশনে ছবি তোলার কথা বিবেচনা করুন। যাইহোক, এই API এর চিত্র মাত্রা প্রয়োজনীয়তাও মনে রাখবেন।
  • কাঁচা আকারের মাস্ক বিকল্পটি সক্ষম করার কথা বিবেচনা করুন এবং সমস্ত রিস্কেলিং লজিক একসাথে একত্রিত করুন। উদাহরণস্বরূপ, API-কে আপনার ইনপুট চিত্রের আকারের সাথে মেলে মাস্কটিকে পুনঃস্কেল করতে দেওয়ার পরিবর্তে এবং তারপর আপনি প্রদর্শনের জন্য ভিউ আকারের সাথে মেলে এটিকে পুনরায় স্কেল করুন, কেবলমাত্র কাঁচা আকারের মাস্কের জন্য অনুরোধ করুন এবং এই দুটি ধাপকে একত্রিত করুন।
  • আপনি Camera বা camera2 API ব্যবহার করলে, ডিটেক্টরে থ্রোটল কল করুন। ডিটেক্টর চলাকালীন একটি নতুন ভিডিও ফ্রেম উপলব্ধ হলে, ফ্রেমটি ফেলে দিন। একটি উদাহরণের জন্য Quickstart নমুনা অ্যাপে VisionProcessorBase ক্লাস দেখুন।
  • আপনি যদি CameraX API ব্যবহার করেন, নিশ্চিত হন যে ব্যাকপ্রেশার কৌশলটি এর ডিফল্ট মান ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST এ সেট করা আছে। এটি গ্যারান্টি দেয় যে একবারে বিশ্লেষণের জন্য শুধুমাত্র একটি চিত্র সরবরাহ করা হবে। বিশ্লেষক ব্যস্ত থাকাকালীন যদি আরও ছবি তৈরি করা হয়, তবে সেগুলি স্বয়ংক্রিয়ভাবে ড্রপ করা হবে এবং বিতরণের জন্য সারিবদ্ধ হবে না। একবার ImageProxy.close() কল করে বিশ্লেষিত চিত্রটি বন্ধ হয়ে গেলে পরবর্তী সর্বশেষ চিত্রটি বিতরণ করা হবে।
  • আপনি যদি ইনপুট ইমেজে গ্রাফিক্স ওভারলে করার জন্য ডিটেক্টরের আউটপুট ব্যবহার করেন, তাহলে প্রথমে ML Kit থেকে ফলাফল পান, তারপর একটি একক ধাপে চিত্র এবং ওভারলে রেন্ডার করুন। এটি প্রতিটি ইনপুট ফ্রেমের জন্য শুধুমাত্র একবার প্রদর্শন পৃষ্ঠে রেন্ডার করে। একটি উদাহরণের জন্য Quickstart নমুনা অ্যাপে CameraSourcePreview এবং GraphicOverlay ক্লাসগুলি দেখুন।
  • আপনি Camera2 API ব্যবহার করলে, ImageFormat.YUV_420_888 ফরম্যাটে ছবি ক্যাপচার করুন। আপনি পুরানো ক্যামেরা API ব্যবহার করলে, ImageFormat.NV21 ফর্ম্যাটে ছবিগুলি ক্যাপচার করুন৷