Selfie-Segmentierung mit ML Kit für Android

ML Kit bietet ein optimiertes SDK für die Selfie-Segmentierung.

Die Selfie Segmenter-Assets werden zur Build-Zeit statisch mit Ihrer App verknüpft. Dadurch erhöht sich die Downloadgröße Ihrer App um etwa 4, 5 MB und die API-Latenz kann je nach Größe des Eingabebilds zwischen 25 ms und 65 ms liegen (gemessen auf einem Pixel 4).

Jetzt ausprobieren

  • Beispiel-App ausprobieren, um ein Beispiel für die Verwendung dieser API zu sehen.

Hinweis

  1. In die Datei build.gradle auf Projektebene muss das Maven-Repository von Google in die Abschnitte buildscript und allprojects aufgenommen werden.
  2. Fügen Sie der Gradle-Datei Ihres Moduls auf App-Ebene, in der Regel app/build.gradle, die Abhängigkeiten für die ML Kit Android-Bibliotheken hinzu:
dependencies {
  implementation 'com.google.mlkit:segmentation-selfie:16.0.0-beta6'
}

1. Segmenter-Instanz erstellen

Optionen für Segmenter

Um ein Bild zu segmentieren, erstellen Sie zuerst eine Instanz von Segmenter und geben Sie die folgenden Optionen an.

Detektormodus

Die Segmenter kann in zwei Modi betrieben werden. Achten Sie darauf, dass Sie die Option auswählen, die Ihrem Anwendungsfall entspricht.

STREAM_MODE (default)

Dieser Modus ist für das Streamen von Frames aus Videos oder Kameras vorgesehen. In diesem Modus nutzt der Segmentierer Ergebnisse aus vorherigen Frames, um glattere Segmentierungsergebnisse zurückzugeben.

SINGLE_IMAGE_MODE

Dieser Modus ist für einzelne Bilder gedacht, die nicht miteinander in Verbindung stehen. In diesem Modus verarbeitet der Segmentierer jedes Bild unabhängig, ohne Glättung über Frames hinweg.

Rohmaske für Größe aktivieren

Fordert den Segmentierer auf, die Rohgrößenmaske zurückzugeben, die der Größe der Modellausgabe entspricht.

Die Größe der Rohmaske (z.B. 256 × 256) ist in der Regel kleiner als die Größe des Eingabebilds. Rufen Sie SegmentationMask#getWidth() und SegmentationMask#getHeight() auf, um die Maskengröße zu ermitteln, wenn Sie diese Option aktivieren.

Ohne diese Option skaliert der Segmentierer die Rohmaske so, dass sie der Größe des Eingabebilds entspricht. Verwenden Sie diese Option, wenn Sie eine benutzerdefinierte Reskalierungslogik anwenden möchten oder für Ihren Anwendungsfall keine Reskalierung erforderlich ist.

Geben Sie die Segmentierungsoptionen an:

Kotlin

val options =
        SelfieSegmenterOptions.Builder()
            .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE)
            .enableRawSizeMask()
            .build()

Java

SelfieSegmenterOptions options =
        new SelfieSegmenterOptions.Builder()
            .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE)
            .enableRawSizeMask()
            .build();

Erstellen Sie eine Instanz von Segmenter. Übergeben Sie die von Ihnen angegebenen Optionen:

Kotlin

val segmenter = Segmentation.getClient(options)

Java

Segmenter segmenter = Segmentation.getClient(options);

2. Eingabebild vorbereiten

Wenn Sie ein Bild segmentieren möchten, erstellen Sie ein InputImage-Objekt aus einem Bitmap, media.Image, ByteBuffer, Byte-Array oder einer Datei auf dem Gerät.

Sie können ein InputImage-Objekt aus verschiedenen Quellen erstellen. Die einzelnen Quellen werden unten beschrieben.

Mit einem media.Image

Wenn Sie ein InputImage-Objekt aus einem media.Image-Objekt erstellen möchten, z. B. wenn Sie ein Bild mit der Kamera eines Geräts aufnehmen, übergeben Sie das media.Image-Objekt und die Drehung des Bildes an InputImage.fromMediaImage().

Wenn Sie die CameraX-Bibliothek verwenden, berechnen die Klassen OnImageCapturedListener und ImageAnalysis.Analyzer den Rotationswert für Sie.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Wenn Sie keine Kamerabibliothek verwenden, die den Drehwinkel des Bildes angibt, können Sie ihn aus dem Drehwinkel des Geräts und der Ausrichtung des Kamerasensors im Gerät berechnen:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Übergeben Sie dann das media.Image-Objekt und den Wert für den Drehwinkel an InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Datei-URI verwenden

Wenn Sie ein InputImage-Objekt aus einem Datei-URI erstellen möchten, übergeben Sie den App-Kontext und den Datei-URI an InputImage.fromFilePath(). Das ist nützlich, wenn Sie mit einem ACTION_GET_CONTENT-Intent den Nutzer auffordern, ein Bild aus seiner Galerie-App auszuwählen.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

ByteBuffer oder ByteArray verwenden

Wenn Sie ein InputImage-Objekt aus einem ByteBuffer oder einem ByteArray erstellen möchten, berechnen Sie zuerst den Bildrotationsgrad wie zuvor für die media.Image-Eingabe beschrieben. Erstellen Sie dann das InputImage-Objekt mit dem Puffer oder Array sowie der Höhe, Breite, dem Farbcodierungsformat und dem Rotationsgrad des Bildes:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Mit einem Bitmap

So erstellen Sie ein InputImage-Objekt aus einem Bitmap-Objekt:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Das Bild wird durch ein Bitmap-Objekt zusammen mit den Rotationsgraden dargestellt.

3. Bild verarbeiten

Übergeben Sie das vorbereitete InputImage-Objekt an die Methode process von Segmenter.

Kotlin

Task<SegmentationMask> result = segmenter.process(image)
       .addOnSuccessListener { results ->
           // Task completed successfully
           // ...
       }
       .addOnFailureListener { e ->
           // Task failed with an exception
           // ...
       }

Java

Task<SegmentationMask> result =
        segmenter.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<SegmentationMask>() {
                            @Override
                            public void onSuccess(SegmentationMask mask) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });
in der Beispiel-App für die Kurzanleitung.

4. Segmentierungsergebnis abrufen

So erhalten Sie das Segmentierungsergebnis:

Kotlin

val mask = segmentationMask.getBuffer()
val maskWidth = segmentationMask.getWidth()
val maskHeight = segmentationMask.getHeight()

for (val y = 0; y < maskHeight; y++) {
  for (val x = 0; x < maskWidth; x++) {
    // Gets the confidence of the (x,y) pixel in the mask being in the foreground.
    val foregroundConfidence = mask.getFloat()
  }
}

Java

ByteBuffer mask = segmentationMask.getBuffer();
int maskWidth = segmentationMask.getWidth();
int maskHeight = segmentationMask.getHeight();

for (int y = 0; y < maskHeight; y++) {
  for (int x = 0; x < maskWidth; x++) {
    // Gets the confidence of the (x,y) pixel in the mask being in the foreground.
    float foregroundConfidence = mask.getFloat();
  }
}

Ein vollständiges Beispiel für die Verwendung der Segmentierungsergebnisse finden Sie im ML Kit-Kurzanleitungsbeispiel.

Tipps zur Leistungsverbesserung

Die Qualität der Ergebnisse hängt von der Qualität des Eingabebilds ab:

  • Damit ML Kit ein genaues Segmentierungsergebnis erzielen kann, sollte das Bild mindestens 256 × 256 Pixel groß sein.
  • Eine schlechte Bildschärfe kann sich ebenfalls auf die Genauigkeit auswirken. Wenn Sie keine akzeptablen Ergebnisse erhalten, bitten Sie den Nutzer, das Bild noch einmal aufzunehmen.

Wenn Sie die Segmentierung in einer Echtzeitanwendung verwenden möchten, sollten Sie die folgenden Richtlinien beachten, um die besten Framerates zu erzielen:

  • Verwenden Sie STREAM_MODE.
  • Nehmen Sie Bilder mit einer niedrigeren Auflösung auf. Beachten Sie jedoch auch die Anforderungen an die Bildabmessungen für diese API.
  • Aktivieren Sie die Option „Rohgrößenmaske“ und kombinieren Sie die gesamte Logik für die Neuskalierung. Anstatt die Maske zuerst von der API an die Größe des Eingabebilds anpassen und sie dann noch einmal an die Größe der Ansicht für die Anzeige anpassen zu lassen, können Sie einfach die Maske in der Rohgröße anfordern und diese beiden Schritte kombinieren.
  • Wenn Sie die API Camera oder camera2 verwenden, drosseln Sie die Aufrufe des Detektors. Wenn ein neuer Videoframes verfügbar wird, während der Detektor ausgeführt wird, verwerfen Sie den Frame. Ein Beispiel finden Sie in der Klasse VisionProcessorBase in der Beispiel-App für die Kurzanleitung.
  • Wenn Sie die CameraX API verwenden, muss die Backpressure-Strategie auf den Standardwert ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST festgelegt sein. So wird sichergestellt, dass jeweils nur ein Bild zur Analyse bereitgestellt wird. Wenn mehr Bilder erstellt werden, während der Analyzer beschäftigt ist, werden sie automatisch verworfen und nicht für die Übermittlung in die Warteschlange gestellt. Sobald das analysierte Bild durch Aufrufen von ImageProxy.close() geschlossen wird, wird das nächste aktuelle Bild bereitgestellt.
  • Wenn Sie die Ausgabe des Detektors verwenden, um Grafiken auf dem Eingabebild zu überlagern, rufen Sie zuerst das Ergebnis von ML Kit ab und rendern Sie dann das Bild und die Überlagerung in einem einzigen Schritt. Das Bild wird für jeden Eingabe-Frame nur einmal auf der Displayoberfläche gerendert. Ein Beispiel finden Sie in der Beispiel-App für die Kurzanleitung in den Klassen CameraSourcePreview und GraphicOverlay.
  • Wenn Sie die Camera2 API verwenden, nehmen Sie Bilder im ImageFormat.YUV_420_888-Format auf. Wenn Sie die ältere Camera API verwenden, nehmen Sie Bilder im ImageFormat.NV21-Format auf.