Korzystając z ML Kit, możesz łatwo dodać do aplikacji funkcje segmentacji obiektów.
Funkcja | Szczegóły |
---|---|
Nazwa pakietu SDK | play-services-mlkit-subject-segmentation |
Implementacja | Rozdzielony: model jest pobierany dynamicznie za pomocą Usług Google Play. |
Wpływ na rozmiar aplikacji | Wzrost rozmiaru o ok. 200 KB. |
Czas inicjowania | Przed pierwszym użyciem użytkownicy mogą musieć poczekać na pobranie modelu. |
Wypróbuj
- Wypróbuj przykładową aplikację, aby zobaczyć przykład użycia tego interfejsu API.
Zanim zaczniesz
- W pliku
build.gradle
na poziomie projektu dodaj repozytorium Maven firmy Google do sekcjibuildscript
iallprojects
. - Dodaj zależność z biblioteką segmentacji tematu ML Kit do pliku Gradle na poziomie aplikacji modułu, który zwykle znajduje się w tym miejscu:
app/build.gradle
dependencies {
implementation 'com.google.android.gms:play-services-mlkit-subject-segmentation:16.0.0-beta1'
}
Jak wspomnieliśmy powyżej, model jest udostępniany przez Usługi Google Play.
Możesz skonfigurować aplikację tak, aby po zainstalowaniu jej ze Sklepu Play model był automatycznie pobierany na urządzenie. Aby to zrobić, dodaj do pliku AndroidManifest.xml
aplikacji tę deklarację:
<application ...>
...
<meta-data
android:name="com.google.mlkit.vision.DEPENDENCIES"
android:value="subject_segment" >
<!-- To use multiple models: android:value="subject_segment,model2,model3" -->
</application>
Możesz też wyraźnie sprawdzić dostępność modelu i poprosić o pobranie za pomocą Usług Google Play za pomocą interfejsu ModuleInstallClient API.
Jeśli nie włączysz pobierania modelu w momencie instalacji ani nie poprosisz o wyraźne pobranie, model zostanie pobrany przy pierwszym uruchomieniu segmentatora. Żądania wysyłane przed zakończeniem pobierania nie przynoszą wyników.
1. Przygotowywanie obrazu wejściowego
Aby przeprowadzić segmentację obrazu, utwórz obiekt InputImage
z obiektu Bitmap
, media.Image
, ByteBuffer
, tablicy bajtów lub pliku na urządzeniu.
Możesz utworzyć InputImage
obiekt z różnych źródeł. Każde z nich opisujemy poniżej.
Korzystanie z media.Image
Aby utworzyć obiekt InputImage
z obiektu media.Image
, np. podczas przechwytywania obrazu z aparatu urządzenia, przekaż obiekt media.Image
i obrót obrazu do InputImage.fromMediaImage()
.
Jeśli używasz biblioteki
CameraX, klasy OnImageCapturedListener
i ImageAnalysis.Analyzer
obliczają wartość rotacji za Ciebie.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Jeśli nie używasz biblioteki aparatu, która podaje stopień obrotu obrazu, możesz obliczyć go na podstawie stopnia obrotu urządzenia i orientacji czujnika aparatu w urządzeniu:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Następnie przekaż obiekt media.Image
i wartość stopnia obrotu do InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Używanie identyfikatora URI pliku
Aby utworzyć obiekt InputImage
z identyfikatora URI pliku, przekaż kontekst aplikacji i identyfikator URI pliku do funkcji InputImage.fromFilePath()
. Jest to przydatne, gdy używasz intencji ACTION_GET_CONTENT
, aby poprosić użytkownika o wybranie obrazu z aplikacji galerii.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Używanie ByteBuffer
lub ByteArray
Aby utworzyć obiekt InputImage
z ByteBuffer
lub ByteArray
, najpierw oblicz stopień rotacji obrazu, jak opisano wcześniej w przypadku danych wejściowych media.Image
.
Następnie utwórz obiekt InputImage
z buforem lub tablicą, a także z wysokością, szerokością, formatem kodowania kolorów i stopniem obrotu obrazu:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Korzystanie z Bitmap
Aby utworzyć obiekt InputImage
z obiektu Bitmap
, zadeklaruj:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Obraz jest reprezentowany przez obiekt Bitmap
wraz ze stopniami obrotu.
2. Tworzenie instancji klasy SubjectSegmenter
Określanie opcji segmentacji
Aby podzielić obraz na segmenty, najpierw utwórz instancję SubjectSegmenterOptions
w ten sposób:
Kotlin
val options = SubjectSegmenterOptions.Builder() // enable options .build()
Java
SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder() // enable options .build();
Oto szczegółowe informacje o każdej opcji:
Maska ufności pierwszego planu
Maska ufności pierwszego planu pozwala odróżnić obiekt na pierwszym planie od tła.
Wywołanie enableForegroundConfidenceMask()
w opcjach umożliwia późniejsze pobranie maski pierwszego planu przez wywołanie getForegroundMask()
na obiekcie SubjectSegmentationResult
zwróconym po przetworzeniu obrazu.
Kotlin
val options = SubjectSegmenterOptions.Builder() .enableForegroundConfidenceMask() .build()
Java
SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder() .enableForegroundConfidenceMask() .build();
Bitmapa pierwszego planu
Podobnie możesz też uzyskać bitmapę obiektu na pierwszym planie.
Wywołanie enableForegroundBitmap()
w opcjach umożliwia późniejsze pobranie mapy bitowej pierwszego planu przez wywołanie getForegroundBitmap()
na obiekcie SubjectSegmentationResult
zwróconym po przetworzeniu obrazu.
Kotlin
val options = SubjectSegmenterOptions.Builder() .enableForegroundBitmap() .build()
Java
SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder() .enableForegroundBitmap() .build();
Maska pewności obejmująca wiele obiektów
Podobnie jak w przypadku opcji pierwszego planu możesz użyć ikony SubjectResultOptions
, aby włączyć maskę pewności dla każdego obiektu na pierwszym planie:
Kotlin
val subjectResultOptions = SubjectSegmenterOptions.SubjectResultOptions.Builder() .enableConfidenceMask() .build() val options = SubjectSegmenterOptions.Builder() .enableMultipleSubjects(subjectResultOptions) .build()
Java
SubjectResultOptions subjectResultOptions = new SubjectSegmenterOptions.SubjectResultOptions.Builder() .enableConfidenceMask() .build() SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder() .enableMultipleSubjects(subjectResultOptions) .build()
Bitmapa z wieloma obiektami
Podobnie możesz włączyć mapę bitową dla każdego obiektu:
Kotlin
val subjectResultOptions = SubjectSegmenterOptions.SubjectResultOptions.Builder() .enableSubjectBitmap() .build() val options = SubjectSegmenterOptions.Builder() .enableMultipleSubjects(subjectResultOptions) .build()
Java
SubjectResultOptions subjectResultOptions = new SubjectSegmenterOptions.SubjectResultOptions.Builder() .enableSubjectBitmap() .build() SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder() .enableMultipleSubjects(subjectResultOptions) .build()
Tworzenie segmentatora obiektu
Po określeniu opcji SubjectSegmenterOptions
utwórz instancję SubjectSegmenter
, wywołując getClient()
i przekazując opcje jako parametr:
Kotlin
val segmenter = SubjectSegmentation.getClient(options)
Java
SubjectSegmenter segmenter = SubjectSegmentation.getClient(options);
3. Przetwarzanie obrazu
Przekaż przygotowany obiekt InputImage
do metody process
obiektu SubjectSegmenter
:
Kotlin
segmenter.process(inputImage) .addOnSuccessListener { result -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
segmenter.process(inputImage) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(SubjectSegmentationResult result) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. Pobieranie wyniku segmentacji obiektu
Pobieranie masek pierwszego planu i map bitowych
Po przetworzeniu możesz pobrać maskę pierwszego planu dla obrazu, wywołując:getForegroundConfidenceMask()
Kotlin
val colors = IntArray(image.width * image.height) val foregroundMask = result.foregroundConfidenceMask for (i in 0 until image.width * image.height) { if (foregroundMask[i] > 0.5f) { colors[i] = Color.argb(128, 255, 0, 255) } } val bitmapMask = Bitmap.createBitmap( colors, image.width, image.height, Bitmap.Config.ARGB_8888 )
Java
int[] colors = new int[image.getWidth() * image.getHeight()]; FloatBuffer foregroundMask = result.getForegroundConfidenceMask(); for (int i = 0; i < image.getWidth() * image.getHeight(); i++) { if (foregroundMask.get() > 0.5f) { colors[i] = Color.argb(128, 255, 0, 255); } } Bitmap bitmapMask = Bitmap.createBitmap( colors, image.getWidth(), image.getHeight(), Bitmap.Config.ARGB_8888 );
Możesz też pobrać bitmapę pierwszego planu obrazu, wywołując getForegroundBitmap()
:
Kotlin
val foregroundBitmap = result.foregroundBitmap
Java
Bitmap foregroundBitmap = result.getForegroundBitmap();
Pobieranie masek i map bitowych dla każdego obiektu
Podobnie możesz pobrać maskę dla segmentowanych obiektów, wywołując
getConfidenceMask()
na każdym obiekcie w ten sposób:
Kotlin
val subjects = result.subjects val colors = IntArray(image.width * image.height) for (subject in subjects) { val mask = subject.confidenceMask for (i in 0 until subject.width * subject.height) { val confidence = mask[i] if (confidence > 0.5f) { colors[image.width * (subject.startY - 1) + subject.startX] = Color.argb(128, 255, 0, 255) } } } val bitmapMask = Bitmap.createBitmap( colors, image.width, image.height, Bitmap.Config.ARGB_8888 )
Java
Listsubjects = result.getSubjects(); int[] colors = new int[image.getWidth() * image.getHeight()]; for (Subject subject : subjects) { FloatBuffer mask = subject.getConfidenceMask(); for (int i = 0; i < subject.getWidth() * subject.getHeight(); i++) { float confidence = mask.get(); if (confidence > 0.5f) { colors[width * (subject.getStartY() - 1) + subject.getStartX()] = Color.argb(128, 255, 0, 255); } } } Bitmap bitmapMask = Bitmap.createBitmap( colors, image.width, image.height, Bitmap.Config.ARGB_8888 );
Możesz też uzyskać dostęp do mapy bitowej każdego segmentowanego obiektu w ten sposób:
Kotlin
val bitmaps = mutableListOf() for (subject in subjects) { bitmaps.add(subject.bitmap) }
Java
Listbitmaps = new ArrayList<>(); for (Subject subject : subjects) { bitmaps.add(subject.getBitmap()); }
Wskazówki dotyczące poprawy skuteczności
Pierwsze wnioskowanie w każdej sesji aplikacji jest często wolniejsze niż kolejne wnioskowania ze względu na inicjowanie modelu. Jeśli małe opóźnienie jest kluczowe, rozważ wcześniejsze wywołanie „fikcyjnego” wnioskowania.
Jakość wyników zależy od jakości obrazu wejściowego:
- Aby ML Kit uzyskał dokładny wynik segmentacji, obraz powinien mieć co najmniej 512 x 512 pikseli.
- Na dokładność może też wpływać słaba ostrość obrazu. Jeśli wyniki nie będą zadowalające, poproś użytkownika o ponowne zrobienie zdjęcia.