Use o Kit de ML para adicionar facilmente atributos de segmentação de assunto ao seu aplicativo.
Recurso | Detalhes |
---|---|
Nome do SDK | play-services-mlkit-subject-segmentation |
Implementação | Desagrupado: o modelo é transferido por download dinamicamente usando o Google Play Services. |
Impacto no tamanho do app | Aumento de tamanho de aproximadamente 200 KB. |
Tempo de inicialização | Talvez seja necessário aguardar o download do modelo para usá-lo pela primeira vez. |
Faça um teste
- Teste o app de exemplo para um exemplo de uso dessa API.
Antes de começar
- No arquivo
build.gradle
no nível do projeto, inclua o repositório Maven do Google nas seçõesbuildscript
eallprojects
. - Adicione a dependência da biblioteca de segmentação de assunto do Kit de ML ao arquivo Gradle do módulo no nível do app, que geralmente é
app/build.gradle
:
dependencies {
implementation 'com.google.android.gms:play-services-mlkit-subject-segmentation:16.0.0-beta1'
}
Como mencionado acima, o modelo é fornecido pelo Google Play Services.
É possível configurar seu app para fazer o download automático do modelo no dispositivo
após a instalação do app pela Play Store. Para fazer isso, adicione o seguinte
declaração ao arquivo AndroidManifest.xml
do app:
<application ...>
...
<meta-data
android:name="com.google.mlkit.vision.DEPENDENCIES"
android:value="subject_segment" >
<!-- To use multiple models: android:value="subject_segment,model2,model3" -->
</application>
Também é possível verificar explicitamente a disponibilidade do modelo e solicitar o download no Google Play Services com a API ModuleInstallClient.
Se você não ativar os downloads do modelo de tempo de instalação ou solicitar o download explícito o modelo é baixado na primeira vez que você executa o segmentado. Solicitações feitas por você antes da conclusão do download não produzem resultados.
1. Preparar a imagem de entrada
Para realizar a segmentação em uma imagem, crie um objeto InputImage
.
de uma matriz de bytes Bitmap
, media.Image
, ByteBuffer
, ou um arquivo na
o dispositivo.
Você pode criar um InputImage
de diferentes origens, cada uma explicada abaixo.
Como usar um media.Image
Para criar um InputImage
de um objeto media.Image
, como quando você captura uma imagem de um
da câmera do dispositivo, transmita o objeto media.Image
e o
rotação para InputImage.fromMediaImage()
.
Se você usar o método
CameraX, os recursos OnImageCapturedListener
e
As classes ImageAnalysis.Analyzer
calculam o valor de rotação
para você.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Se você não usar uma biblioteca de câmera que informe o grau de rotação da imagem, pode calculá-lo usando o grau de rotação do dispositivo e a orientação da câmera no dispositivo:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Em seguida, transmita o objeto media.Image
e o
grau de rotação para InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Usar um URI de arquivo
Para criar um InputImage
de um URI de arquivo, transmita o contexto do aplicativo e o URI do arquivo para
InputImage.fromFilePath()
. Isso é útil quando você
usar uma intent ACTION_GET_CONTENT
para solicitar que o usuário selecione
uma imagem do app Galeria.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Como usar ByteBuffer
ou ByteArray
Para criar um InputImage
objeto de uma ByteBuffer
ou ByteArray
, primeiro calcule a imagem
grau de rotação conforme descrito anteriormente para a entrada media.Image
.
Depois, crie o objeto InputImage
com o buffer ou a matriz, junto com o
altura, largura, formato de codificação de cores e grau de rotação:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Como usar um Bitmap
Para criar um InputImage
de um objeto Bitmap
, faça a seguinte declaração:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
A imagem é representada por um objeto Bitmap
com os graus de rotação.
2. Crie uma instância de SubjectSegmentr
Definir as opções do segmentador
Para segmentar sua imagem, primeiro crie uma instância de SubjectSegmenterOptions
como
seguir:
Kotlin
val options = SubjectSegmenterOptions.Builder() // enable options .build()
Java
SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder() // enable options .build();
Veja os detalhes de cada opção:
Máscara de confiança em primeiro plano
A máscara de confiança em primeiro plano permite distinguir o objeto em primeiro plano do em segundo plano.
Chamar enableForegroundConfidenceMask()
nas opções permite que você recupere mais tarde
máscara de primeiro plano chamando getForegroundMask()
no
Objeto SubjectSegmentationResult
retornado após o processamento da imagem.
Kotlin
val options = SubjectSegmenterOptions.Builder() .enableForegroundConfidenceMask() .build()
Java
SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder() .enableForegroundConfidenceMask() .build();
Bitmap de primeiro plano
Da mesma forma, também é possível acessar um bitmap do objeto em primeiro plano.
Chamar enableForegroundBitmap()
nas opções permite que você recupere mais tarde
o bitmap de primeiro plano chamando getForegroundBitmap()
no
Objeto SubjectSegmentationResult
retornado após o processamento da imagem.
Kotlin
val options = SubjectSegmenterOptions.Builder() .enableForegroundBitmap() .build()
Java
SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder() .enableForegroundBitmap() .build();
Máscara de confiança de vários assuntos
Assim como nas opções de primeiro plano, você pode usar SubjectResultOptions
para ativar
a máscara de confiança para cada objeto em primeiro plano da seguinte maneira:
Kotlin
val subjectResultOptions = SubjectSegmenterOptions.SubjectResultOptions.Builder() .enableConfidenceMask() .build() val options = SubjectSegmenterOptions.Builder() .enableMultipleSubjects(subjectResultOptions) .build()
Java
SubjectResultOptions subjectResultOptions = new SubjectSegmenterOptions.SubjectResultOptions.Builder() .enableConfidenceMask() .build() SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder() .enableMultipleSubjects(subjectResultOptions) .build()
Bitmap de vários assuntos
Da mesma forma, você pode ativar o bitmap para cada assunto:
Kotlin
val subjectResultOptions = SubjectSegmenterOptions.SubjectResultOptions.Builder() .enableSubjectBitmap() .build() val options = SubjectSegmenterOptions.Builder() .enableMultipleSubjects(subjectResultOptions) .build()
Java
SubjectResultOptions subjectResultOptions = new SubjectSegmenterOptions.SubjectResultOptions.Builder() .enableSubjectBitmap() .build() SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder() .enableMultipleSubjects(subjectResultOptions) .build()
Criar o segmento de assunto
Depois de especificar as opções SubjectSegmenterOptions
, crie um
Instância de SubjectSegmenter
chamando getClient()
e transmitindo as opções como um
:
Kotlin
val segmenter = SubjectSegmentation.getClient(options)
Java
SubjectSegmenter segmenter = SubjectSegmentation.getClient(options);
3. Processar uma imagem
Transmita o InputImage
preparado.
ao método process
do SubjectSegmenter
:
Kotlin
segmenter.process(inputImage) .addOnSuccessListener { result -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
segmenter.process(inputImage) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(SubjectSegmentationResult result) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. Acessar o resultado da segmentação de assunto
Extrair máscaras e bitmaps de primeiro plano
Depois do processamento, é possível recuperar a máscara de primeiro plano da sua imagem chamando
getForegroundConfidenceMask()
da seguinte maneira:
Kotlin
val colors = IntArray(image.width * image.height) val foregroundMask = result.foregroundConfidenceMask for (i in 0 until image.width * image.height) { if (foregroundMask[i] > 0.5f) { colors[i] = Color.argb(128, 255, 0, 255) } } val bitmapMask = Bitmap.createBitmap( colors, image.width, image.height, Bitmap.Config.ARGB_8888 )
Java
int[] colors = new int[image.getWidth() * image.getHeight()]; FloatBuffer foregroundMask = result.getForegroundConfidenceMask(); for (int i = 0; i < image.getWidth() * image.getHeight(); i++) { if (foregroundMask.get() > 0.5f) { colors[i] = Color.argb(128, 255, 0, 255); } } Bitmap bitmapMask = Bitmap.createBitmap( colors, image.getWidth(), image.getHeight(), Bitmap.Config.ARGB_8888 );
Você também pode extrair um bitmap do primeiro plano da imagem chamando getForegroundBitmap()
:
Kotlin
val foregroundBitmap = result.foregroundBitmap
Java
Bitmap foregroundBitmap = result.getForegroundBitmap();
Extrair máscaras e bitmaps de cada assunto
Da mesma forma, é possível recuperar a máscara dos assuntos segmentados chamando
getConfidenceMask()
em cada assunto desta maneira:
Kotlin
val subjects = result.subjects val colors = IntArray(image.width * image.height) for (subject in subjects) { val mask = subject.confidenceMask for (i in 0 until subject.width * subject.height) { val confidence = mask[i] if (confidence > 0.5f) { colors[image.width * (subject.startY - 1) + subject.startX] = Color.argb(128, 255, 0, 255) } } } val bitmapMask = Bitmap.createBitmap( colors, image.width, image.height, Bitmap.Config.ARGB_8888 )
Java
Listsubjects = result.getSubjects(); int[] colors = new int[image.getWidth() * image.getHeight()]; for (Subject subject : subjects) { FloatBuffer mask = subject.getConfidenceMask(); for (int i = 0; i < subject.getWidth() * subject.getHeight(); i++) { float confidence = mask.get(); if (confidence > 0.5f) { colors[width * (subject.getStartY() - 1) + subject.getStartX()] = Color.argb(128, 255, 0, 255); } } } Bitmap bitmapMask = Bitmap.createBitmap( colors, image.width, image.height, Bitmap.Config.ARGB_8888 );
Também é possível acessar o bitmap de cada assunto segmentado da seguinte maneira:
Kotlin
val bitmaps = mutableListOf() for (subject in subjects) { bitmaps.add(subject.bitmap) }
Java
Listbitmaps = new ArrayList<>(); for (Subject subject : subjects) { bitmaps.add(subject.getBitmap()); }
Dicas para melhorar o desempenho
Para cada sessão do app, a primeira inferência costuma ser mais lenta do que a subsequente e inferências devido à inicialização do modelo. Se a baixa latência for um fator crítico, considere chamar um "boneco" inferência antecipada.
A qualidade dos resultados depende da qualidade da imagem de entrada:
- Para que o Kit de ML gere um resultado de segmentação preciso, a imagem precisa ter pelo menos 512 x 512 pixels.
- Uma imagem com foco inadequado também pode afetar a precisão. Se você não conseguir resultados aceitáveis, peça ao usuário para recapturar a imagem.