ML Kit'i kullanarak resimlerdeki veya videolardaki metinleri (ör. trafik işareti metni) tanıyabilirsiniz. Bu özelliğin temel özellikleri şunlardır:
Özellik | Paket halinde sunulmayan | Gruplandırılanlar |
---|---|---|
Kitaplığın adı | com.google.android.gms:play-services-mlkit-text-recognition
com.google.android.gms:play-services-mlkit-text-recognition-chinese com.google.android.gms:play-services-mlkit-text-recognition-devanagari com.google.android.gms:play-services-mlkit-text-recognition-japanese com.google.android.gms:play-services-mlkit-text-recognition-korean |
com.google.mlkit:text-recognition
com.google.mlkit:text-recognition-chinese com.google.mlkit:text-recognition-devanagari com.google.mlkit:text-recognition-japanese com.google.mlkit:text-recognition-korean |
Uygulama | Model, Google Play Hizmetleri aracılığıyla dinamik olarak indirilir. | Model, derleme zamanında uygulamanıza statik olarak bağlanır. |
Uygulama boyutu | Komut dosyası mimarisi başına yaklaşık 260 KB boyut artışı. | Mimari başına komut dosyası başına yaklaşık 4 MB boyut artışı. |
Başlatma süresi | İlk kullanımdan önce modelin indirilmesini beklemeniz gerekebilir. | Model hemen kullanılabilir. |
Performans | Latin alfabesiyle yazılmış kitaplık için çoğu cihazda anında, diğerleri için daha yavaş. | Latin alfabesiyle yazılmış kitaplık için çoğu cihazda anında, diğerleri için daha yavaş. |
Deneyin
- Bu API'nin kullanımına dair bir örnek görmek için örnek uygulamayı inceleyin.
- Codelab ile kodu kendiniz deneyin.
Başlamadan önce
- Proje düzeyindeki
build.gradle
dosyanızda, Google'ın Maven deposunu hembuildscript
hem deallprojects
bölümüne eklediğinizden emin olun. ML Kit Android kitaplıklarının bağımlılıklarını, modülünüzün uygulama düzeyindeki Gradle dosyasına (genellikle
app/build.gradle
) ekleyin:Modeli uygulamanızla paketlemek için:
dependencies { // To recognize Latin script implementation 'com.google.mlkit:text-recognition:16.0.1' // To recognize Chinese script implementation 'com.google.mlkit:text-recognition-chinese:16.0.1' // To recognize Devanagari script implementation 'com.google.mlkit:text-recognition-devanagari:16.0.1' // To recognize Japanese script implementation 'com.google.mlkit:text-recognition-japanese:16.0.1' // To recognize Korean script implementation 'com.google.mlkit:text-recognition-korean:16.0.1' }
Modeli Google Play Hizmetleri'nde kullanmak için:
dependencies { // To recognize Latin script implementation 'com.google.android.gms:play-services-mlkit-text-recognition:19.0.1' // To recognize Chinese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-chinese:16.0.1' // To recognize Devanagari script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-devanagari:16.0.1' // To recognize Japanese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-japanese:16.0.1' // To recognize Korean script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-korean:16.0.1' }
Google Play Hizmetleri'ndeki modeli kullanmayı tercih ederseniz uygulamanızı, Play Store'dan yüklendikten sonra modeli cihaza otomatik olarak indirecek şekilde yapılandırabilirsiniz. Bunu yapmak için uygulamanızın
AndroidManifest.xml
dosyasına aşağıdaki bildirimi ekleyin:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="ocr" > <!-- To use multiple models: android:value="ocr,ocr_chinese,ocr_devanagari,ocr_japanese,ocr_korean,..." --> </application>
Ayrıca, modelin kullanılabilirliğini açıkça kontrol edebilir ve Google Play Hizmetleri ModuleInstallClient API aracılığıyla indirme isteğinde bulunabilirsiniz. Yükleme sırasında model indirmelerini etkinleştirmezseniz veya açıkça indirme isteğinde bulunmazsanız model, tarayıcıyı ilk çalıştırdığınızda indirilir. İndirme işlemi tamamlanmadan önce yaptığınız istekler sonuç vermez.
1. TextRecognizer
örneği oluşturma
Yukarıda bağımlılık bildirdiğiniz kitaplıkla ilgili seçenekleri ileterek TextRecognizer
örneği oluşturun:
Kotlin
// When using Latin script library val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS) // When using Chinese script library val recognizer = TextRecognition.getClient(ChineseTextRecognizerOptions.Builder().build()) // When using Devanagari script library val recognizer = TextRecognition.getClient(DevanagariTextRecognizerOptions.Builder().build()) // When using Japanese script library val recognizer = TextRecognition.getClient(JapaneseTextRecognizerOptions.Builder().build()) // When using Korean script library val recognizer = TextRecognition.getClient(KoreanTextRecognizerOptions.Builder().build())
Java
// When using Latin script library TextRecognizer recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS); // When using Chinese script library TextRecognizer recognizer = TextRecognition.getClient(new ChineseTextRecognizerOptions.Builder().build()); // When using Devanagari script library TextRecognizer recognizer = TextRecognition.getClient(new DevanagariTextRecognizerOptions.Builder().build()); // When using Japanese script library TextRecognizer recognizer = TextRecognition.getClient(new JapaneseTextRecognizerOptions.Builder().build()); // When using Korean script library TextRecognizer recognizer = TextRecognition.getClient(new KoreanTextRecognizerOptions.Builder().build());
2. Giriş resmini hazırlama
Resimdeki metni tanımak için Bitmap
, media.Image
, ByteBuffer
, bayt dizisi veya cihazdaki bir dosyadan InputImage
nesnesi oluşturun. Ardından, InputImage
nesnesini TextRecognizer
'ın processImage
yöntemine iletin.
Farklı kaynaklardan InputImage
nesnesi oluşturabilirsiniz. Her biri aşağıda açıklanmıştır.
media.Image
kullanma
Bir media.Image
nesnesinden InputImage
nesnesi oluşturmak için (ör. bir cihazın kamerasından resim yakaladığınızda) media.Image
nesnesini ve resmin dönüşünü InputImage.fromMediaImage()
'e iletin.
CameraX kitaplığını kullanıyorsanız OnImageCapturedListener
ve
ImageAnalysis.Analyzer
sınıfları, sizin için döndürme değerini hesaplar.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Resmin dönüş derecesini veren bir kamera kitaplığı kullanmıyorsanız, cihazın dönüş derecesi ve cihazdaki kamera sensörünün yönlendirmesinden yararlanarak dönüş derecesini hesaplayabilirsiniz:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Ardından, media.Image
nesnesini ve dönüş derecesi değerini InputImage.fromMediaImage()
'ye iletin:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Dosya URI'si kullanma
Dosya URI'sinden InputImage
nesnesi oluşturmak için uygulama bağlamını ve dosya URI'sini InputImage.fromFilePath()
'ye iletin. Bu, kullanıcıdan galeri uygulamasından bir resim seçmesini istemek için ACTION_GET_CONTENT
amacını kullandığınızda yararlıdır.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
ByteBuffer
veya ByteArray
kullanma
ByteBuffer
veya ByteArray
öğesinden InputImage
nesnesi oluşturmak için öncelikle media.Image
girişi için daha önce açıklandığı gibi görüntü döndürme derecesini hesaplayın.
Ardından, arabellek veya diziyle birlikte resmin yüksekliği, genişliği, renk kodlama biçimi ve döndürme derecesiyle InputImage
nesnesini oluşturun:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Bitmap
kullanma
Bitmap
nesnesinden InputImage
nesnesi oluşturmak için aşağıdaki bildirimi yapın:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Resim, döndürme dereceleriyle birlikte bir Bitmap
nesnesiyle gösterilir.
3. Resmi işleme
Resmi process
yöntemine iletin:
Kotlin
val result = recognizer.process(image) .addOnSuccessListener { visionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<Text> result = recognizer.process(image) .addOnSuccessListener(new OnSuccessListener<Text>() { @Override public void onSuccess(Text visionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. Tanınan metin bloklarından metin çıkarma
Metin tanıma işlemi başarılı olursa başarı dinleyicisine bir Text
nesnesi iletilir. Text
nesnesi, resimde tanınan metnin tamamını ve sıfır veya daha fazla TextBlock
nesnesini içerir.
Her TextBlock
, sıfır veya daha fazla Line
nesnesi içeren dikdörtgen bir metin blokunu temsil eder. Her Line
nesnesi, sıfır veya daha fazla Element
nesnesi içeren bir metin satırını temsil eder. Her Element
nesnesi, sıfır veya daha fazla Symbol
nesnesi içeren bir kelimeyi ya da kelime benzeri bir öğeyi temsil eder. Her Symbol
nesnesi bir karakteri, rakamı veya kelime benzeri bir öğeyi temsil eder.
Her TextBlock
, Line
, Element
ve Symbol
nesnesi için bölgede tanınan metni, bölgenin sınırlama koordinatlarını ve döndürme bilgileri, güven puanı gibi birçok özelliği alabilirsiniz.
Örneğin:
Kotlin
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
Java
String resultText = result.getText(); for (Text.TextBlock block : result.getTextBlocks()) { String blockText = block.getText(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (Text.Line line : block.getLines()) { String lineText = line.getText(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (Text.Element element : line.getElements()) { String elementText = element.getText(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); for (Text.Symbol symbol : element.getSymbols()) { String symbolText = symbol.getText(); Point[] symbolCornerPoints = symbol.getCornerPoints(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
Giriş resmi kuralları
-
ML Kit'in metni doğru şekilde tanıması için giriş resimlerinde yeterli piksel verisiyle temsil edilen metin bulunmalıdır. İdeal olarak, her karakter en az 16x16 piksel olmalıdır. Genellikle karakterlerin 24x24 pikselden büyük olması doğruluk açısından bir avantaj sağlamaz.
Bu nedenle, örneğin, resmin tam genişliğini kaplayan bir kartviziti taramak için 640x480 boyutundaki bir resim iyi sonuç verebilir. Mektup boyutunda kağıda yazdırılmış bir belgeyi taramak için 720x1280 piksel boyutunda bir görüntü gerekebilir.
-
Resmin iyi odaklanmaması, metin tanıma doğruluğunu etkileyebilir. Kabul edilebilir sonuçlar alamıyorsanız kullanıcıdan resmi yeniden çekmesini isteyin.
-
Anlık bir uygulamada metin tanıma işlemi yapıyorsanız giriş resimlerinin genel boyutlarını göz önünde bulundurmanız gerekir. Daha küçük resimler daha hızlı işlenebilir. Gecikmeyi azaltmak için metnin mümkün olduğunca büyük bir bölümünü kapladığından emin olun ve görüntüleri daha düşük çözünürlüklerde çekin (yukarıda belirtilen doğruluk şartlarını göz önünde bulundurarak). Daha fazla bilgi için Performansı artırmaya yönelik ipuçları başlıklı makaleyi inceleyin.
Performansı artırmaya yönelik ipuçları
Camera
veyacamera2
API'sini kullanıyorsanız dedektöre yapılan çağrıları sınırlayın. Dedektör çalışırken yeni bir video karesi kullanılabilir hale gelirse kareyi bırakın. Örnek için hızlı başlangıç örnek uygulamasındakiVisionProcessorBase
sınıfına bakın.CameraX
API'sini kullanıyorsanız geri basınç stratejisinin varsayılan değerine ayarlandığından emin olunImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. Bu, analiz için aynı anda yalnızca bir resmin gönderilmesini sağlar. Analizör meşgulken daha fazla resim üretilirse bunlar otomatik olarak bırakılır ve teslimat için sıraya alınmaz. Analiz edilen görüntü ImageProxy.close() çağrılarak kapatıldığında, en son görüntü teslim edilir.- Giriş resmine grafik yerleştirmek için algılayıcının çıkışını kullanıyorsanız önce ML Kit'ten sonucu alın, ardından resmi tek adımda oluşturun ve yerleştirin. Bu, her giriş karesi için yalnızca bir kez görüntüleme yüzeyinde oluşturulur. Örnek için hızlı başlangıç örnek uygulamasındaki
CameraSourcePreview
veGraphicOverlay
sınıflarına bakın. - Camera2 API'yi kullanıyorsanız
ImageFormat.YUV_420_888
biçiminde resim çekin. Eski Camera API'yi kullanıyorsanız görüntüleriImageFormat.NV21
biçiminde çekin. - Görüntüleri daha düşük çözünürlükte çekmeyi deneyin. Ancak bu API'nin resim boyutu koşullarını da göz önünde bulundurun.