Mit ML Kit können Sie Text in Bildern oder Videos erkennen, z. B. den Text auf einem Straßenschild. Die wichtigsten Merkmale dieser Funktion sind:
Funktion | Nicht gebündelt | Gebündelt |
---|---|---|
Name der Bibliothek | com.google.android.gms:play-services-mlkit-text-recognition
com.google.android.gms:play-services-mlkit-text-recognition-chinese com.google.android.gms:play-services-mlkit-text-recognition-devanagari com.google.android.gms:play-services-mlkit-text-recognition-japanese com.google.android.gms:play-services-mlkit-text-recognition-korean |
com.google.mlkit:text-recognition
com.google.mlkit:text-recognition-chinese com.google.mlkit:text-recognition-devanagari com.google.mlkit:text-recognition-japanese com.google.mlkit:text-recognition-korean |
Implementierung | Das Modell wird dynamisch über die Google Play-Dienste heruntergeladen. | Das Modell wird zur Build-Zeit statisch mit Ihrer App verknüpft. |
App-Größe | Die Größe nimmt pro Skriptarchitektur um etwa 260 KB zu. | Die Größe nimmt pro Script und Architektur um etwa 4 MB zu. |
Initialisierungszeit | Möglicherweise müssen Sie warten, bis das Modell heruntergeladen wurde, bevor Sie es zum ersten Mal verwenden können. | Das Modell ist sofort verfügbar. |
Leistung | Auf den meisten Geräten in Echtzeit für die Bibliothek mit lateinischer Schrift, langsamer für andere. | Auf den meisten Geräten in Echtzeit für die Bibliothek mit lateinischer Schrift, langsamer für andere. |
Jetzt ausprobieren
- Beispiel-App ausprobieren, um ein Beispiel für die Verwendung dieser API zu sehen.
- Codelab
Hinweis
- In die Datei
build.gradle
auf Projektebene muss das Maven-Repository von Google in die Abschnittebuildscript
undallprojects
aufgenommen werden. Fügen Sie der Gradle-Datei Ihres Moduls auf App-Ebene, in der Regel
app/build.gradle
, die Abhängigkeiten für die ML Kit Android-Bibliotheken hinzu:Für das Bündeln des Modells mit Ihrer App:
dependencies { // To recognize Latin script implementation 'com.google.mlkit:text-recognition:16.0.1' // To recognize Chinese script implementation 'com.google.mlkit:text-recognition-chinese:16.0.1' // To recognize Devanagari script implementation 'com.google.mlkit:text-recognition-devanagari:16.0.1' // To recognize Japanese script implementation 'com.google.mlkit:text-recognition-japanese:16.0.1' // To recognize Korean script implementation 'com.google.mlkit:text-recognition-korean:16.0.1' }
Für die Verwendung des Modells in den Google Play-Diensten:
dependencies { // To recognize Latin script implementation 'com.google.android.gms:play-services-mlkit-text-recognition:19.0.1' // To recognize Chinese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-chinese:16.0.1' // To recognize Devanagari script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-devanagari:16.0.1' // To recognize Japanese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-japanese:16.0.1' // To recognize Korean script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-korean:16.0.1' }
Wenn Sie das Modell in Google Play-Diensten verwenden, können Sie Ihre App so konfigurieren, dass das Modell automatisch auf das Gerät heruntergeladen wird, nachdem Ihre App aus dem Play Store installiert wurde. Fügen Sie dazu der Datei
AndroidManifest.xml
Ihrer App die folgende Deklaration hinzu:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="ocr" > <!-- To use multiple models: android:value="ocr,ocr_chinese,ocr_devanagari,ocr_japanese,ocr_korean,..." --> </application>
Sie können die Modellverfügbarkeit auch explizit prüfen und den Download über die ModuleInstallClient API der Google Play-Dienste anfordern. Wenn Sie keine Downloads von Modellen zur Installationszeit aktivieren oder keinen expliziten Download anfordern, wird das Modell beim ersten Ausführen des Scanners heruntergeladen. Anfragen, die Sie vor Abschluss des Downloads stellen, liefern keine Ergebnisse.
1. Instanz von TextRecognizer
erstellen
Erstellen Sie eine Instanz von TextRecognizer
und übergeben Sie die Optionen, die sich auf die Bibliothek beziehen, für die Sie oben eine Abhängigkeit deklariert haben:
Kotlin
// When using Latin script library val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS) // When using Chinese script library val recognizer = TextRecognition.getClient(ChineseTextRecognizerOptions.Builder().build()) // When using Devanagari script library val recognizer = TextRecognition.getClient(DevanagariTextRecognizerOptions.Builder().build()) // When using Japanese script library val recognizer = TextRecognition.getClient(JapaneseTextRecognizerOptions.Builder().build()) // When using Korean script library val recognizer = TextRecognition.getClient(KoreanTextRecognizerOptions.Builder().build())
Java
// When using Latin script library TextRecognizer recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS); // When using Chinese script library TextRecognizer recognizer = TextRecognition.getClient(new ChineseTextRecognizerOptions.Builder().build()); // When using Devanagari script library TextRecognizer recognizer = TextRecognition.getClient(new DevanagariTextRecognizerOptions.Builder().build()); // When using Japanese script library TextRecognizer recognizer = TextRecognition.getClient(new JapaneseTextRecognizerOptions.Builder().build()); // When using Korean script library TextRecognizer recognizer = TextRecognition.getClient(new KoreanTextRecognizerOptions.Builder().build());
2. Eingabebild vorbereiten
Wenn Sie Text in einem Bild erkennen möchten, erstellen Sie ein InputImage
-Objekt aus einem Bitmap
, media.Image
, ByteBuffer
, Byte-Array oder einer Datei auf dem Gerät. Übergeben Sie dann das InputImage
-Objekt an die Methode processImage
von TextRecognizer
.
Sie können ein InputImage
-Objekt aus verschiedenen Quellen erstellen. Die einzelnen Quellen werden unten beschrieben.
Mit einem media.Image
Wenn Sie ein InputImage
-Objekt aus einem media.Image
-Objekt erstellen möchten, z. B. wenn Sie ein Bild mit der Kamera eines Geräts aufnehmen, übergeben Sie das media.Image
-Objekt und die Drehung des Bildes an InputImage.fromMediaImage()
.
Wenn Sie die
CameraX-Bibliothek verwenden, berechnen die Klassen OnImageCapturedListener
und ImageAnalysis.Analyzer
den Rotationswert für Sie.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Wenn Sie keine Kamerabibliothek verwenden, die den Drehwinkel des Bildes angibt, können Sie ihn aus dem Drehwinkel des Geräts und der Ausrichtung des Kamerasensors im Gerät berechnen:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Übergeben Sie dann das media.Image
-Objekt und den Wert für den Drehwinkel an InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Datei-URI verwenden
Wenn Sie ein InputImage
-Objekt aus einem Datei-URI erstellen möchten, übergeben Sie den App-Kontext und den Datei-URI an InputImage.fromFilePath()
. Das ist nützlich, wenn Sie mit einem ACTION_GET_CONTENT
-Intent den Nutzer auffordern, ein Bild aus seiner Galerie-App auszuwählen.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
ByteBuffer
oder ByteArray
verwenden
Wenn Sie ein InputImage
-Objekt aus einem ByteBuffer
oder einem ByteArray
erstellen möchten, berechnen Sie zuerst den Bildrotationsgrad wie zuvor für die media.Image
-Eingabe beschrieben.
Erstellen Sie dann das InputImage
-Objekt mit dem Puffer oder Array sowie der Höhe, Breite, dem Farbcodierungsformat und dem Rotationsgrad des Bildes:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Mit einem Bitmap
So erstellen Sie ein InputImage
-Objekt aus einem Bitmap
-Objekt:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Das Bild wird durch ein Bitmap
-Objekt zusammen mit den Rotationsgraden dargestellt.
3. Bild verarbeiten
Übergeben Sie das Bild an die Methode process
:
Kotlin
val result = recognizer.process(image) .addOnSuccessListener { visionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<Text> result = recognizer.process(image) .addOnSuccessListener(new OnSuccessListener<Text>() { @Override public void onSuccess(Text visionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. Text aus Blöcken mit erkanntem Text extrahieren
Wenn die Texterkennung erfolgreich ist, wird ein Text
-Objekt an den Erfolgs-Listener übergeben. Ein Text
-Objekt enthält den im Bild erkannten vollständigen Text und null oder mehr TextBlock
-Objekte.
Jedes TextBlock
-Objekt stellt einen rechteckigen Textblock dar, der null oder mehr Line
-Objekte enthält. Jedes Line
-Objekt stellt eine Textzeile dar, die null oder mehr Element
-Objekte enthält. Jedes Element
-Objekt steht für ein Wort oder eine wortähnliche Einheit, die null oder mehr Symbol
-Objekte enthält. Jedes Symbol
-Objekt stellt ein Zeichen, eine Ziffer oder eine wortähnliche Einheit dar.
Für jedes TextBlock
-, Line
-, Element
- und Symbol
-Objekt können Sie den in der Region erkannten Text, die Begrenzungskoordinaten der Region und viele andere Attribute wie Rotationsinformationen, Konfidenzwert usw. abrufen.
Beispiel:
Kotlin
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
Java
String resultText = result.getText(); for (Text.TextBlock block : result.getTextBlocks()) { String blockText = block.getText(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (Text.Line line : block.getLines()) { String lineText = line.getText(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (Text.Element element : line.getElements()) { String elementText = element.getText(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); for (Text.Symbol symbol : element.getSymbols()) { String symbolText = symbol.getText(); Point[] symbolCornerPoints = symbol.getCornerPoints(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
Richtlinien für Eingabebilder
-
Damit Text von ML Kit genau erkannt werden kann, müssen Eingabebilder Text enthalten, der durch ausreichend Pixeldaten dargestellt wird. Idealerweise sollte jedes Zeichen mindestens 16 × 16 Pixel groß sein. Im Allgemeinen gibt es keinen Genauigkeitsvorteil, wenn Zeichen größer als 24 × 24 Pixel sind.
Ein Bild mit 640 × 480 Pixeln eignet sich beispielsweise gut zum Scannen einer Visitenkarte, die die gesamte Breite des Bildes einnimmt. Wenn Sie ein auf Papier im Letter-Format gedrucktes Dokument scannen möchten, ist möglicherweise ein Bild mit 720 × 1.280 Pixeln erforderlich.
-
Eine schlechte Bildschärfe kann die Genauigkeit der Texterkennung beeinträchtigen. Wenn Sie keine akzeptablen Ergebnisse erhalten, bitten Sie den Nutzer, das Bild noch einmal aufzunehmen.
-
Wenn Sie Text in einer Echtzeitanwendung erkennen, sollten Sie die Gesamtabmessungen der Eingabebilder berücksichtigen. Kleinere Bilder können schneller verarbeitet werden. Um die Latenz zu verringern, sollte der Text möglichst viel Platz im Bild einnehmen. Außerdem sollten Bilder mit einer niedrigeren Auflösung aufgenommen werden (unter Berücksichtigung der oben genannten Anforderungen an die Genauigkeit). Weitere Informationen finden Sie unter Tipps zur Verbesserung der Leistung.
Tipps zur Leistungsverbesserung
- Wenn Sie die API
Camera
odercamera2
verwenden, drosseln Sie die Aufrufe des Detektors. Wenn ein neuer Videoframes verfügbar wird, während der Detektor ausgeführt wird, verwerfen Sie den Frame. Ein Beispiel finden Sie in der KlasseVisionProcessorBase
in der Beispiel-App für die Kurzanleitung. - Wenn Sie die
CameraX
API verwenden, muss die Backpressure-Strategie auf den StandardwertImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
festgelegt sein. So wird sichergestellt, dass jeweils nur ein Bild zur Analyse bereitgestellt wird. Wenn mehr Bilder erstellt werden, während der Analyzer beschäftigt ist, werden sie automatisch verworfen und nicht für die Übermittlung in die Warteschlange gestellt. Sobald das analysierte Bild durch Aufrufen von ImageProxy.close() geschlossen wird, wird das nächste aktuelle Bild bereitgestellt. - Wenn Sie die Ausgabe des Detektors verwenden, um Grafiken auf dem Eingabebild zu überlagern, rufen Sie zuerst das Ergebnis von ML Kit ab und rendern Sie dann das Bild und die Überlagerung in einem einzigen Schritt. Das Bild wird für jeden Eingabe-Frame nur einmal auf der Displayoberfläche gerendert. Ein Beispiel finden Sie in der Beispiel-App für die Kurzanleitung in den Klassen
CameraSourcePreview
undGraphicOverlay
. - Wenn Sie die Camera2 API verwenden, nehmen Sie Bilder im
ImageFormat.YUV_420_888
-Format auf. Wenn Sie die ältere Camera API verwenden, nehmen Sie Bilder imImageFormat.NV21
-Format auf. - Nehmen Sie Bilder mit einer niedrigeren Auflösung auf. Beachten Sie jedoch auch die Anforderungen an die Bildabmessungen für diese API.