אפשר להשתמש ב-ML Kit כדי לזהות טקסט בתמונות או בסרטונים, כמו הטקסט של שלט רחוב. המאפיינים העיקריים של התכונה הזו הם:
ממשק API לזיהוי טקסט גרסה 2 | |
---|---|
תיאור | זיהוי טקסט בתמונות או בסרטונים, תמיכה בכתבים לטינית, סינית, דבנאגרי, יפנית וקוריאנית ובמגוון רחב של שפות. |
שמות ערכות SDK | GoogleMLKit/TextRecognition |
הטמעה | הנכסים מקושרים באופן סטטי לאפליקציה בזמן ה-build |
ההשפעה של גודל האפליקציה | כ-38MB לכל סקריפט SDK |
ביצועים | זמן אמת ברוב המכשירים ל-SDK של סקריפט לטיני, איטי יותר עבור אחרים. |
רוצה לנסות?
- מומלץ לשחק עם האפליקציה לדוגמה כדי .
- נסו את הקוד בעצמכם בעזרת Codelab.
לפני שמתחילים
- כוללים ב-Podfile את רצפי ה-ML Kit הבאים:
# To recognize Latin script pod 'GoogleMLKit/TextRecognition', '15.5.0' # To recognize Chinese script pod 'GoogleMLKit/TextRecognitionChinese', '15.5.0' # To recognize Devanagari script pod 'GoogleMLKit/TextRecognitionDevanagari', '15.5.0' # To recognize Japanese script pod 'GoogleMLKit/TextRecognitionJapanese', '15.5.0' # To recognize Korean script pod 'GoogleMLKit/TextRecognitionKorean', '15.5.0'
- אחרי שמתקינים או מעדכנים את קבוצות ה-Pod של הפרויקט, פותחים את פרויקט Xcode באמצעות
.xcworkspace
יש תמיכה ב-ML Kit ב-Xcode מגרסה 12.4 ואילך.
1. יצירת מכונה של TextRecognizer
כדי ליצור מופע של TextRecognizer
, צריך להתקשר
+textRecognizer(options:)
, העברה של האפשרויות שקשורות ל-SDK שעליו הצהרת
ותלויות למעלה:
Swift
// When using Latin script recognition SDK let latinOptions = TextRecognizerOptions() let latinTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Chinese script recognition SDK let chineseOptions = ChineseTextRecognizerOptions() let chineseTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Devanagari script recognition SDK let devanagariOptions = DevanagariTextRecognizerOptions() let devanagariTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Japanese script recognition SDK let japaneseOptions = JapaneseTextRecognizerOptions() let japaneseTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Korean script recognition SDK let koreanOptions = KoreanTextRecognizerOptions() let koreanTextRecognizer = TextRecognizer.textRecognizer(options:options)
Objective-C
// When using Latin script recognition SDK MLKTextRecognizerOptions *latinOptions = [[MLKTextRecognizerOptions alloc] init]; MLKTextRecognizer *latinTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Chinese script recognition SDK MLKChineseTextRecognizerOptions *chineseOptions = [[MLKChineseTextRecognizerOptions alloc] init]; MLKTextRecognizer *chineseTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Devanagari script recognition SDK MLKDevanagariTextRecognizerOptions *devanagariOptions = [[MLKDevanagariTextRecognizerOptions alloc] init]; MLKTextRecognizer *devanagariTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Japanese script recognition SDK MLKJapaneseTextRecognizerOptions *japaneseOptions = [[MLKJapaneseTextRecognizerOptions alloc] init]; MLKTextRecognizer *japaneseTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Korean script recognition SDK MLKKoreanTextRecognizerOptions *koreanOptions = [[MLKKoreanTextRecognizerOptions alloc] init]; MLKTextRecognizer *koreanTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options];
2. הכנת תמונת הקלט
מעבירים את התמונה כ-UIImage
או כ-CMSampleBufferRef
ל-method process(_:completion:)
של TextRecognizer
:
יוצרים אובייקט VisionImage
באמצעות UIImage
או CMSampleBuffer
.
אם אתם משתמשים ב-UIImage
, עליכם לפעול לפי השלבים הבאים:
- יוצרים אובייקט
VisionImage
באמצעותUIImage
. חשוב לציין את הערך הנכון של.orientation
.Swift
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
Objective-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
אם אתם משתמשים ב-CMSampleBuffer
, עליכם לפעול לפי השלבים הבאים:
-
ציון הכיוון של נתוני התמונה שמכיל השדה
CMSampleBuffer
.כדי לקבל את כיוון התמונה:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
Objective-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- יוצרים אובייקט
VisionImage
באמצעות האובייקטCMSampleBuffer
והכיוון:Swift
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
Objective-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. עיבוד התמונה
לאחר מכן, מעבירים את התמונה לשיטה process(_:completion:)
:
Swift
textRecognizer.process(visionImage) { result, error in guard error == nil, let result = result else { // Error handling return } // Recognized text }
Objective-C
[textRecognizer processImage:image completion:^(MLKText *_Nullable result, NSError *_Nullable error) { if (error != nil || result == nil) { // Error handling return; } // Recognized text }];
4. חילוץ טקסט מקטעי טקסט מזוהים
אם פעולת זיהוי הטקסט מסתיימת בהצלחה, היא מחזירה אובייקט Text
. אובייקט Text
מכיל את הטקסט המלא שזוהה בתמונה ואפס או יותר אובייקטים מסוג TextBlock
.
כל TextBlock
מייצג קטע טקסט מלבני,
לא מכילים אפס אובייקטים או יותר מסוג TextLine
. כל אובייקט TextLine
מכיל אפס או יותר אובייקטים מסוג TextElement
, שמייצגים מילים וישויות דמויות-מילה כמו תאריכים ומספרים.
לכל TextBlock
, TextLine
וגם
TextElement
, אפשר לקבל את הטקסט שמזוהה
והקואורדינטות התוחמות של האזור.
לדוגמה:
Swift
let resultText = result.text for block in result.blocks { let blockText = block.text let blockLanguages = block.recognizedLanguages let blockCornerPoints = block.cornerPoints let blockFrame = block.frame for line in block.lines { let lineText = line.text let lineLanguages = line.recognizedLanguages let lineCornerPoints = line.cornerPoints let lineFrame = line.frame for element in line.elements { let elementText = element.text let elementCornerPoints = element.cornerPoints let elementFrame = element.frame } } }
Objective-C
NSString *resultText = result.text; for (MLKTextBlock *block in result.blocks) { NSString *blockText = block.text; NSArray<MLKTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages; NSArray<NSValue *> *blockCornerPoints = block.cornerPoints; CGRect blockFrame = block.frame; for (MLKTextLine *line in block.lines) { NSString *lineText = line.text; NSArray<MLKTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages; NSArray<NSValue *> *lineCornerPoints = line.cornerPoints; CGRect lineFrame = line.frame; for (MLKTextElement *element in line.elements) { NSString *elementText = element.text; NSArray<NSValue *> *elementCornerPoints = element.cornerPoints; CGRect elementFrame = element.frame; } } }
הנחיות להוספת תמונה
-
כדי ש-ML Kit יוכל לזהות טקסט באופן מדויק, תמונות הקלט חייבות להכיל שמיוצג על ידי כמות מספקת של נתוני פיקסלים. במצב אידיאלי, כל תו צריך להיות בגודל 16x16 פיקסלים לפחות. בדרך כלל אין לשיפור הדיוק של התווים, כך שהם יהיו גדולים מ-24x24 פיקסלים.
לדוגמה, תמונה בגודל 640x480 יכולה להתאים לסריקה של כרטיס ביקור שממלא את כל רוחב התמונה. כדי לסרוק מסמך שמודפס על נייר בגודל Letter, יכול להיות שתצטרכו תמונה בגודל 720x1280 פיקסלים.
-
מיקוד לקוי של התמונה עלול להשפיע על רמת הדיוק של זיהוי הטקסט. אם התוצאות לא מתקבלות, נסו לבקש מהמשתמש לצלם מחדש את התמונה.
-
אם אתה מזהה טקסט באפליקציה בזמן אמת, עליך לוקחים בחשבון את המידות הכוללות של תמונות הקלט. עיבוד של תמונות קטנות יותר מתבצע מהר יותר. כדי לקצר את זמן האחזור, ודאו שהטקסט מכיל את התמונה ככל האפשר, ולצלם תמונות ברזולוציה נמוכה יותר (תוך התחשבות בדיוק בדרישות שצוינו למעלה). מידע נוסף זמין במאמר טיפים לשיפור הביצועים.
טיפים לשיפור הביצועים
- כדי לעבד פריימים של סרטונים, משתמשים ב-API הסינכרוני
results(in:)
של הגלאי. צריך לקרוא לשיטה הזו מהפונקציהcaptureOutput(_, didOutput:from:)
שלAVCaptureVideoDataOutputSampleBufferDelegate
כדי לקבל תוצאות מסונכרנות מהפריים הנתון של הסרטון. שמור את שלAVCaptureVideoDataOutput
alwaysDiscardsLateVideoFrames
בתורtrue
כדי לווסת שיחות למזהה. אם פריים חדש של וידאו יהפוך לזמין בזמן שהגלאי פועל, הוא יושמט. - אם משתמשים בפלט של הגלאי כדי להציג גרפיקה בשכבת-על מקבלים קודם את התוצאה מ-ML Kit ואז מעבדים את התמונה וליצור שכבת-על בשלב אחד. כך מבצעים רינדור למשטח התצוגה רק פעם אחת לכל מסגרת קלט שעברה עיבוד. אפשר לעיין בתצוגה updatePreviewOverlayViewWithLastFrame בדוגמת המדריך למתחילים ל-ML Kit.
- כדאי לצלם תמונות ברזולוציה נמוכה יותר. עם זאת, חשוב גם לזכור בדרישות של מידות התמונה ב-API הזה.
- כדי למנוע פגיעה פוטנציאלית בביצועים, אל תפעילו בו-זמנית כמה מכונות
TextRecognizer
עם אפשרויות שונות של סקריפטים.