Ich möchte Daten deterministisch verschlüsseln

Wir empfehlen, das deterministische AEAD-Primitive mit dem Schlüsseltyp AES256_SIV zu verwenden.

Das Primitive „Deterministic Authenticated Encryption with Associated Data“ (Deterministic AEAD) erzeugt stabile Geheimtexte: Wenn ein bestimmter Klartext verschlüsselt wird, wird immer derselbe Geheimtext zurückgegeben. Sie ist symmetrisch, d. h., es wird ein einziger Schlüssel für die Ver- und Entschlüsselung verwendet.

Die folgenden Beispiele helfen Ihnen bei den ersten Schritten mit der deterministischen AEAD-Primitive:

C++

// A command-line utility for testing Tink Deterministic AEAD.
#include <iostream>
#include <memory>
#include <ostream>
#include <string>

#include "absl/flags/flag.h"
#include "absl/flags/parse.h"
#include "absl/log/check.h"
#include "absl/strings/string_view.h"
#include "tink/config/global_registry.h"
#include "tink/daead/deterministic_aead_config.h"
#include "tink/deterministic_aead.h"
#include "util/util.h"
#include "tink/keyset_handle.h"
#include "tink/util/status.h"

ABSL_FLAG(std::string, keyset_filename, "", "Keyset file in JSON format");
ABSL_FLAG(std::string, mode, "", "Mode of operation {encrypt|decrypt}");
ABSL_FLAG(std::string, input_filename, "", "Filename to operate on");
ABSL_FLAG(std::string, output_filename, "", "Output file name");
ABSL_FLAG(std::string, associated_data, "",
          "Associated data for Deterministic AEAD (default: empty");

namespace {

using ::crypto::tink::DeterministicAead;
using ::crypto::tink::DeterministicAeadConfig;
using ::crypto::tink::KeysetHandle;
using ::crypto::tink::util::Status;
using ::crypto::tink::util::StatusOr;

constexpr absl::string_view kEncrypt = "encrypt";
constexpr absl::string_view kDecrypt = "decrypt";

void ValidateParams() {
  // ...
}

}  // namespace

namespace tink_cc_examples {

// Deterministic AEAD example CLI implementation.
Status DeterministicAeadCli(absl::string_view mode,
                            const std::string& keyset_filename,
                            const std::string& input_filename,
                            const std::string& output_filename,
                            absl::string_view associated_data) {
  Status result = DeterministicAeadConfig::Register();
  if (!result.ok()) return result;

  // Read keyset from file.
  StatusOr<std::unique_ptr<KeysetHandle>> keyset_handle =
      ReadJsonCleartextKeyset(keyset_filename);
  if (!keyset_handle.ok()) return keyset_handle.status();

  // Get the primitive.
  StatusOr<std::unique_ptr<DeterministicAead>> daead =
      (*keyset_handle)
          ->GetPrimitive<crypto::tink::DeterministicAead>(
              crypto::tink::ConfigGlobalRegistry());
  if (!daead.ok()) return daead.status();

  // Read the input.
  StatusOr<std::string> input_file_content = ReadFile(input_filename);
  if (!input_file_content.ok()) return input_file_content.status();

  // Compute the output.
  std::string output;
  if (mode == kEncrypt) {
    StatusOr<std::string> result = (*daead)->EncryptDeterministically(
        *input_file_content, associated_data);
    if (!result.ok()) return result.status();
    output = *result;
  } else if (mode == kDecrypt) {
    StatusOr<std::string> result = (*daead)->DecryptDeterministically(
        *input_file_content, associated_data);
    if (!result.ok()) return result.status();
    output = *result;
  }

  // Write output to file.
  return WriteToFile(output, output_filename);
}

}  // namespace tink_cc_examples

int main(int argc, char** argv) {
  absl::ParseCommandLine(argc, argv);

  ValidateParams();

  std::string mode = absl::GetFlag(FLAGS_mode);
  std::string keyset_filename = absl::GetFlag(FLAGS_keyset_filename);
  std::string input_filename = absl::GetFlag(FLAGS_input_filename);
  std::string output_filename = absl::GetFlag(FLAGS_output_filename);
  std::string associated_data = absl::GetFlag(FLAGS_associated_data);

  std::clog << "Using keyset from file " << keyset_filename
            << " to Deterministic AEAD-" << mode << " file " << input_filename
            << " with associated data '" << associated_data << "'."
            << std::endl;
  std::clog << "The resulting output will be written to " << output_filename
            << "." << std::endl;

  CHECK_OK(tink_cc_examples::DeterministicAeadCli(
      mode, keyset_filename, input_filename, output_filename, associated_data));
  return 0;
}

Go

import (
	"bytes"
	"fmt"
	"log"

	"github.com/tink-crypto/tink-go/v2/daead"
	"github.com/tink-crypto/tink-go/v2/insecurecleartextkeyset"
	"github.com/tink-crypto/tink-go/v2/keyset"
)

func Example() {
	// A keyset created with "tinkey create-keyset --key-template=AES256_SIV". Note
	// that this keyset has the secret key information in cleartext.
	jsonKeyset := `{
			"key": [{
				"keyData": {
						"keyMaterialType":
								"SYMMETRIC",
						"typeUrl":
								"type.googleapis.com/google.crypto.tink.AesSivKey",
						"value":
								"EkAl9HCMmKTN1p3V186uhZpJQ+tivyc4IKyE+opg6SsEbWQ/WesWHzwCRrlgRuxdaggvgMzwWhjPnkk9gptBnGLK"
				},
				"keyId": 1919301694,
				"outputPrefixType": "TINK",
				"status": "ENABLED"
		}],
		"primaryKeyId": 1919301694
	}`

	// Create a keyset handle from the cleartext keyset in the previous
	// step. The keyset handle provides abstract access to the underlying keyset to
	// limit the exposure of accessing the raw key material. WARNING: In practice,
	// it is unlikely you will want to use a insecurecleartextkeyset, as it implies
	// that your key material is passed in cleartext, which is a security risk.
	// Consider encrypting it with a remote key in Cloud KMS, AWS KMS or HashiCorp Vault.
	// See https://github.com/google/tink/blob/master/docs/GOLANG-HOWTO.md#storing-and-loading-existing-keysets.
	keysetHandle, err := insecurecleartextkeyset.Read(
		keyset.NewJSONReader(bytes.NewBufferString(jsonKeyset)))
	if err != nil {
		log.Fatal(err)
	}

	// Retrieve the DAEAD primitive we want to use from the keyset handle.
	primitive, err := daead.New(keysetHandle)
	if err != nil {
		log.Fatal(err)
	}

	// Use the primitive to encrypt a message. In this case the primary key of the
	// keyset will be used (which is also the only key in this example).
	plaintext := []byte("message")
	associatedData := []byte("associated data")
	ciphertext, err := primitive.EncryptDeterministically(plaintext, associatedData)
	if err != nil {
		log.Fatal(err)
	}

	// Use the primitive to decrypt the message. Decrypt finds the correct key in
	// the keyset and decrypts the ciphertext. If no key is found or decryption
	// fails, it returns an error.
	decrypted, err := primitive.DecryptDeterministically(ciphertext, associatedData)
	if err != nil {
		log.Fatal(err)
	}

	fmt.Println(ciphertext)
	fmt.Println(string(decrypted))
	// Output:
	// [1 114 102 56 62 150 98 146 84 99 211 36 127 214 229 231 157 56 143 192 250 132 32 153 124 244 238 112]
	// message
}

Java

package deterministicaead;

import static java.nio.charset.StandardCharsets.UTF_8;

import com.google.crypto.tink.DeterministicAead;
import com.google.crypto.tink.InsecureSecretKeyAccess;
import com.google.crypto.tink.KeysetHandle;
import com.google.crypto.tink.RegistryConfiguration;
import com.google.crypto.tink.TinkJsonProtoKeysetFormat;
import com.google.crypto.tink.daead.DeterministicAeadConfig;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

/**
 * A command-line utility for encrypting small files with Deterministic AEAD.
 *
 * <p>It loads cleartext keys from disk - this is not recommended!
 *
 * <p>It requires the following arguments:
 *
 * <ul>
 *   <li>mode: Can be "encrypt" or "decrypt" to encrypt/decrypt the input to the output.
 *   <li>key-file: Read the key material from this file.
 *   <li>input-file: Read the input from this file.
 *   <li>output-file: Write the result to this file.
 *   <li>[optional] associated-data: Associated data used for the encryption or decryption.
 */
public final class DeterministicAeadExample {
  private static final String MODE_ENCRYPT = "encrypt";
  private static final String MODE_DECRYPT = "decrypt";

  public static void main(String[] args) throws Exception {
    if (args.length != 4 && args.length != 5) {
      System.err.printf("Expected 4 or 5 parameters, got %d\n", args.length);
      System.err.println(
          "Usage: java DeterministicAeadExample encrypt/decrypt key-file input-file output-file"
              + " [associated-data]");
      System.exit(1);
    }
    String mode = args[0];
    Path keyFile = Paths.get(args[1]);
    Path inputFile = Paths.get(args[2]);
    Path outputFile = Paths.get(args[3]);
    byte[] associatedData = new byte[0];
    if (args.length == 5) {
      associatedData = args[4].getBytes(UTF_8);
    }

    // Initialise Tink: register all Deterministic AEAD key types with the Tink runtime
    DeterministicAeadConfig.register();

    // Read the keyset into a KeysetHandle
    KeysetHandle handle =
        TinkJsonProtoKeysetFormat.parseKeyset(
            new String(Files.readAllBytes(keyFile), UTF_8), InsecureSecretKeyAccess.get());

    // Get the primitive
    DeterministicAead daead =
        handle.getPrimitive(RegistryConfiguration.get(), DeterministicAead.class);

    // Use the primitive to encrypt/decrypt files.
    if (MODE_ENCRYPT.equals(mode)) {
      byte[] plaintext = Files.readAllBytes(inputFile);
      byte[] ciphertext = daead.encryptDeterministically(plaintext, associatedData);
      Files.write(outputFile, ciphertext);
    } else if (MODE_DECRYPT.equals(mode)) {
      byte[] ciphertext = Files.readAllBytes(inputFile);
      byte[] plaintext = daead.decryptDeterministically(ciphertext, associatedData);
      Files.write(outputFile, plaintext);
    } else {
      System.err.println("The first argument must be either encrypt or decrypt, got: " + mode);
      System.exit(1);
    }

    System.exit(0);
  }

  private DeterministicAeadExample() {}
}

Python

import tink
from tink import daead
from tink import secret_key_access


def example():
  """Encrypt and decrypt using deterministic AEAD."""
  # Register the deterministic AEAD key manager. This is needed to create a
  # DeterministicAead primitive later.
  daead.register()

  # A keyset created with "tinkey create-keyset --key-template=AES256_SIV". Note
  # that this keyset has the secret key information in cleartext.
  keyset = r"""{
      "key": [{
          "keyData": {
              "keyMaterialType":
                  "SYMMETRIC",
              "typeUrl":
                  "type.googleapis.com/google.crypto.tink.AesSivKey",
              "value":
                  "EkAl9HCMmKTN1p3V186uhZpJQ+tivyc4IKyE+opg6SsEbWQ/WesWHzwCRrlgRuxdaggvgMzwWhjPnkk9gptBnGLK"
          },
          "keyId": 1919301694,
          "outputPrefixType": "TINK",
          "status": "ENABLED"
      }],
      "primaryKeyId": 1919301694
  }"""

  # Create a keyset handle from the cleartext keyset in the previous
  # step. The keyset handle provides abstract access to the underlying keyset to
  # limit the exposure of accessing the raw key material. WARNING: In practice,
  # it is unlikely you will want to use a cleartext_keyset_handle, as it implies
  # that your key material is passed in cleartext which is a security risk.
  keyset_handle = tink.json_proto_keyset_format.parse(
      keyset, secret_key_access.TOKEN
  )

  # Retrieve the DeterministicAead primitive we want to use from the keyset
  # handle.
  primitive = keyset_handle.primitive(daead.DeterministicAead)

  # Use the primitive to encrypt a message. In this case the primary key of the
  # keyset will be used (which is also the only key in this example).
  ciphertext = primitive.encrypt_deterministically(b'msg', b'associated_data')

  # Use the primitive to decrypt the message. Decrypt finds the correct key in
  # the keyset and decrypts the ciphertext. If no key is found or decryption
  # fails, it raises an error.
  output = primitive.decrypt_deterministically(ciphertext, b'associated_data')

Deterministisches AEAD

Das Primitive „Deterministic Authenticated Encryption with Associated Data“ (Deterministic AEAD) bietet Verschlüsselung mit einer deterministischen Eigenschaft: Wenn dieselben Daten verschlüsselt werden, wird immer derselbe Geheimtext generiert. Diese Art der Verschlüsselung ist nützlich für das Verpacken von Schlüsseln oder für bestimmte Schemata zum Suchen in verschlüsselten Daten (weitere Informationen finden Sie in RFC 5297, Abschnitt 1.3). Aufgrund der deterministischen Eigenschaft dieses Primitivs kann die Geheimhaltung verloren gehen, da ein Angreifer nur den Chiffretext für eine bestimmte Nachricht herausfinden muss, um andere Instanzen dieser Nachricht zu identifizieren.

Deterministic AEAD hat die folgenden Eigenschaften:

  • Secrecy: Es ist nichts über den Klartext bekannt, außer seiner Länge und der Gleichheit wiederholter Klartexte.
  • Authentizität: Es ist nicht möglich, den verschlüsselten Klartext, der dem Geheimtext zugrunde liegt, unbemerkt zu ändern.
  • Symmetrisch: Der Klartext wird verschlüsselt und der Geheimtext wird mit demselben Schlüssel entschlüsselt.
  • Deterministisch: Solange der Primärschlüssel nicht geändert wird, führt die zweimalige Verschlüsselung eines Klartexts mit denselben Parametern zum selben Geheimtext.

Verknüpfte Daten

Mit deterministischer AEAD kann Geheimtext mit bestimmten zugehörigen Daten verknüpft werden. Angenommen, Sie haben eine Datenbank mit den Feldern user-id und encrypted-medical-history. In diesem Szenario kann user-id beim Verschlüsseln von encrypted-medical-history als verknüpfte Daten verwendet werden. Dadurch wird verhindert, dass ein Angreifer einen medizinischen Verlauf von einem Nutzer zu einem anderen verschieben kann.

Zugehörige Daten sind optional. Wenn angegeben, ist die Entschlüsselung nur erfolgreich, wenn dieselben zugehörigen Daten an die Verschlüsselungs- und Entschlüsselungsaufrufe übergeben werden.

Schlüsseltyp auswählen

Wir empfehlen den Schlüsseltyp AES256_SIV für alle Anwendungsfälle.

Sicherheitsgarantien

  • Mindestens 80 Bit Authentifizierungsstärke.
  • Der Klartext und die zugehörigen Daten können eine beliebige Länge haben (im Bereich von 0 bis 232 Byte).
  • 128-Bit-Sicherheitsniveau gegen Angriffe zur Schlüsselwiederherstellung und auch bei Angriffen mit mehreren Nutzern mit bis zu 232 Schlüsseln. Das bedeutet: Wenn ein Angreifer 232 Chiffretexte derselben Nachricht erhält, die mit 232 Schlüsseln verschlüsselt wurden, muss er 2128 Berechnungen durchführen, um einen einzelnen Schlüssel zu erhalten.
  • Die Möglichkeit, 238 Nachrichten sicher zu verschlüsseln, sofern jede Nachricht weniger als 1 MB lang ist.