本指南演示了路线优化解决方案中提供的车辆数量如何因请求参数而异。
Route Optimization API 不仅可以优化配送完成顺序,还可以将这些配送任务分配给车辆,以便在您管理的限制条件下优化成本。
在第一个示例中,车辆数量与货件数量一致,所有车辆共享相同的费用和位置属性。每辆车都有每小时运营成本和每公里行驶成本,这有助于最大限度地缩短出行时间和距离。您可能会认为多个车辆会分配到货件,但示例响应显示了在指定费用模型参数下的最低费用解决方案。
查看包含多辆车的请求示例
{ "model": { "globalStartTime": "2023-01-13T16:00:00-08:00", "globalEndTime": "2023-01-14T16:00:00-08:00", "shipments": [ { "deliveries": [ { "arrivalLocation": { "latitude": 37.789456, "longitude": -122.390192 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 100.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.789116, "longitude": -122.395080 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 5.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.795242, "longitude": -122.399347 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 50.0 } ], "vehicles": [ { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerHour": 50.0, "costPerKilometer": 10.0 }, { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerHour": 50.0, "costPerKilometer": 10.0 }, { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerHour": 50.0, "costPerKilometer": 10.0 } ] } }
查看对包含多辆车的请求的响应
{ "routes": [ { "vehicleStartTime": "2023-01-14T00:00:00Z", "vehicleEndTime": "2023-01-14T00:28:22Z", "visits": [ { "isPickup": true, "startTime": "2023-01-14T00:00:00Z", "detour": "0s" }, { "shipmentIndex": 2, "isPickup": true, "startTime": "2023-01-14T00:02:30Z", "detour": "150s" }, { "startTime": "2023-01-14T00:08:55Z", "detour": "150s" }, { "shipmentIndex": 2, "startTime": "2023-01-14T00:21:21Z", "detour": "572s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:00:00Z" }, { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:02:30Z" }, { "travelDuration": "235s", "travelDistanceMeters": 795, "waitDuration": "0s", "totalDuration": "235s", "startTime": "2023-01-14T00:05:00Z" }, { "travelDuration": "496s", "travelDistanceMeters": 1893, "waitDuration": "0s", "totalDuration": "496s", "startTime": "2023-01-14T00:13:05Z" }, { "travelDuration": "171s", "travelDistanceMeters": 665, "waitDuration": "0s", "totalDuration": "171s", "startTime": "2023-01-14T00:25:31Z" } ], "metrics": { "performedShipmentCount": 2, "travelDuration": "902s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "800s", "totalDuration": "1702s", "travelDistanceMeters": 3353 }, "routeCosts": { "model.vehicles.cost_per_kilometer": 33.53, "model.vehicles.cost_per_hour": 23.638888888888889 }, "routeTotalCost": 57.168888888888887 }, { "vehicleIndex": 1 }, { "vehicleIndex": 2 } ], "skippedShipments": [ { "index": 1 } ], "metrics": { "aggregatedRouteMetrics": { "performedShipmentCount": 2, "travelDuration": "902s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "800s", "totalDuration": "1702s", "travelDistanceMeters": 3353 }, "usedVehicleCount": 1, "earliestVehicleStartTime": "2023-01-14T00:00:00Z", "latestVehicleEndTime": "2023-01-14T00:28:22Z", "totalCost": 62.168888888888887, "costs": { "model.vehicles.cost_per_hour": 23.638888888888889, "model.shipments.penalty_cost": 5, "model.vehicles.cost_per_kilometer": 33.53 } } }
尽管有充足的车辆可用,但求解器仍将所有货件分配给一辆车,并跳过一个货件。这是因为运营额外车辆的成本过高,无法合理化,而且任何车辆完成跳过的配送的成本效益都不高,因为违规罚款成本较低。尽管车辆有可用运力,但一辆车可以以最具成本效益的方式完成所有分配的货件。请求中的车辆未设置 usedIfRouteIsEmpty
属性(如需了解详情,请参阅 Vehicle
消息文档 [REST、gRPC]),因此如果未使用,则不会产生任何费用。
更改费用参数以优先考虑全局较短的解决方案,而不是单个较短的车辆路线,会导致更多车辆参与到解决方案中。以下示例请求将 Vehicle.costPerHour
替换为全局 ShipmentModel.globalDurationCostPerHour
,优先考虑总运行时间较短的解决方案(针对任何给定车辆)。shipment[1]
的惩罚成本也增加了,以降低其被跳过的可能性。
请参阅使用 globalDurationCostPerHour
的示例请求
{ "model": { "globalStartTime": "2023-01-13T16:00:00-08:00", "globalEndTime": "2023-01-14T16:00:00-08:00", "globalDurationCostPerHour": 150.0, "shipments": [ { "deliveries": [ { "arrivalLocation": { "latitude": 37.789456, "longitude": -122.390192 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 100.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.789116, "longitude": -122.395080 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 75.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.795242, "longitude": -122.399347 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 50.0 } ], "vehicles": [ { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerKilometer": 10.0 }, { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerKilometer": 10.0 }, { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerKilometer": 10.0 } ] } }
结果表明,使用每小时全球费用参数后,系统会使用全部三辆车,而不是只使用一辆车。
查看使用 globalDurationCostPerHour
对请求的响应
{ "routes": [ { "vehicleStartTime": "2023-01-14T00:00:00Z", "vehicleEndTime": "2023-01-14T00:16:20Z", "visits": [ { "shipmentIndex": 2, "isPickup": true, "startTime": "2023-01-14T00:00:00Z", "detour": "0s" }, { "shipmentIndex": 2, "startTime": "2023-01-14T00:09:19Z", "detour": "0s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:00:00Z" }, { "travelDuration": "409s", "travelDistanceMeters": 1371, "waitDuration": "0s", "totalDuration": "409s", "startTime": "2023-01-14T00:02:30Z" }, { "travelDuration": "171s", "travelDistanceMeters": 665, "waitDuration": "0s", "totalDuration": "171s", "startTime": "2023-01-14T00:13:29Z" } ], "metrics": { "performedShipmentCount": 1, "travelDuration": "580s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "400s", "totalDuration": "980s", "travelDistanceMeters": 2036 }, "routeCosts": { "model.vehicles.cost_per_kilometer": 20.36 }, "routeTotalCost": 20.36 }, { "vehicleIndex": 1, "vehicleStartTime": "2023-01-14T00:00:00Z", "vehicleEndTime": "2023-01-14T00:18:54Z", "visits": [ { "shipmentIndex": 1, "isPickup": true, "startTime": "2023-01-14T00:00:00Z", "detour": "0s" }, { "shipmentIndex": 1, "startTime": "2023-01-14T00:08:24Z", "detour": "0s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:00:00Z" }, { "travelDuration": "354s", "travelDistanceMeters": 1192, "waitDuration": "0s", "totalDuration": "354s", "startTime": "2023-01-14T00:02:30Z" }, { "travelDuration": "380s", "travelDistanceMeters": 1190, "waitDuration": "0s", "totalDuration": "380s", "startTime": "2023-01-14T00:12:34Z" } ], "metrics": { "performedShipmentCount": 1, "travelDuration": "734s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "400s", "totalDuration": "1134s", "travelDistanceMeters": 2382 }, "routeCosts": { "model.vehicles.cost_per_kilometer": 23.82 }, "routeTotalCost": 23.82 }, { "vehicleIndex": 2, "vehicleStartTime": "2023-01-14T00:00:00Z", "vehicleEndTime": "2023-01-14T00:16:14Z", "visits": [ { "isPickup": true, "startTime": "2023-01-14T00:00:00Z", "detour": "0s" }, { "startTime": "2023-01-14T00:06:25Z", "detour": "0s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:00:00Z" }, { "travelDuration": "235s", "travelDistanceMeters": 795, "waitDuration": "0s", "totalDuration": "235s", "startTime": "2023-01-14T00:02:30Z" }, { "travelDuration": "339s", "travelDistanceMeters": 1276, "waitDuration": "0s", "totalDuration": "339s", "startTime": "2023-01-14T00:10:35Z" } ], "metrics": { "performedShipmentCount": 1, "travelDuration": "574s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "400s", "totalDuration": "974s", "travelDistanceMeters": 2071 }, "routeCosts": { "model.vehicles.cost_per_kilometer": 20.71 }, "routeTotalCost": 20.71 } ], "metrics": { "aggregatedRouteMetrics": { "performedShipmentCount": 3, "travelDuration": "1888s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "1200s", "totalDuration": "3088s", "travelDistanceMeters": 6489 }, "usedVehicleCount": 3, "earliestVehicleStartTime": "2023-01-14T00:00:00Z", "latestVehicleEndTime": "2023-01-14T00:18:54Z", "totalCost": 112.14, "costs": { "model.vehicles.cost_per_kilometer": 64.89, "model.global_duration_cost_per_hour": 47.25 } } }
在此响应中,所有三辆车都在使用中(根据 metrics.usedVehicleCount
),每辆车都分配了一项要完成的配送任务。如果起点、终点和 costPerKilometer
都相同,则这三辆车实际上可以互换,因此将哪个货件分配给哪辆车并不重要。
globalDurationCostPerHour
会使优化器找到总体上更短的解决方案:earliestVehicleStartTime
和 latestVehicleEndTime
之间的差仅为 18 分 54 秒,而之前的回答中为 28 分 22 秒。也就是说,metrics.costs.model.vehicles.cost_per_kilometer
有所增加,反映出所使用的三辆车的总行驶距离更长。这展示了成本模型让您做出权衡的一种方式:
- 增加全局时间成本:提高车辆利用率,以尽量缩短总完成时间,但会增加车辆行驶距离和在途时间。
- 增加车辆时间成本:降低车辆利用率和在途时间,但会延长整体解决方案的耗时。
请注意,在此示例中,globalDurationCostPerHour
值 150.0 设置为之前示例中单个车辆的 costPerHour
值 50.0 的三倍。此全局费用值实际上假设所有三辆车都会同时运行,但在实际设置中,此类假设可能无法反映现实情况,实际上可能会对结果质量产生负面影响。
如费用模型参数中所述,所有费用参数都以相同的无量纲单位表示,但含义可能大相径庭。通常,费用模型参数值应尽可能贴近实际情况,因为像此示例中的人工费用可能会导致 API 针对与您的意图不符的目标进行优化。