针对自提和配送进行基本的停单优化

此场景使用简单的费用参数优化为车辆分配的停靠点顺序。这是路线优化操作中最简单的模式,可确保在指定时间范围内访问所有经停点。

以下示例展示了一个基本场景,其中包含一辆车辆和三笔运输,所有这些运输均来自一个名为仓库的位置。

查看示例请求

      {
        "populatePolylines": true,
        "populateTransitionPolylines": true,
        "model": {
          "globalStartTime": "2023-01-13T16:00:00-08:00",
          "globalEndTime": "2023-01-14T16:00:00-08:00",
          "shipments": [
            {
              "deliveries": [
                {
                  "arrivalLocation": {
                    "latitude": 37.789456,
                    "longitude": -122.390192
                  },
                  "duration": "250s"
                }
              ],
              "pickups": [
                {
                  "arrivalLocation": {
                    "latitude": 37.794465,
                    "longitude": -122.394839
                  },
                  "duration": "150s"
                }
              ]
            },
            {
              "deliveries": [
                {
                  "arrivalLocation": {
                    "latitude": 37.789116,
                    "longitude": -122.395080
                  },
                  "duration": "250s"
                }
              ],
              "pickups": [
                {
                  "arrivalLocation": {
                    "latitude": 37.794465,
                    "longitude": -122.394839
                  },
                  "duration": "150s"
                }
              ]
            },
            {
              "deliveries": [
                {
                  "arrivalLocation": {
                    "latitude": 37.795242,
                    "longitude": -122.399347
                  },
                  "duration": "250s"
                }
              ],
              "pickups": [
                {
                  "arrivalLocation": {
                    "latitude": 37.794465,
                    "longitude": -122.394839
                  },
                  "duration": "150s"
                }
              ]
            }
          ],
          "vehicles": [
            {
              "endLocation": {
                "latitude": 37.794465,
                "longitude": -122.394839
              },
              "startLocation": {
                "latitude": 37.794465,
                "longitude": -122.394839
              },
              "costPerKilometer": 10.0,
              "costPerHour": 40.0
            }
          ]
        }
      }
    

路线优化请求字段

概览中所述,最重要的路线优化请求属性是 vehiclesshipments

除了车辆和运输信息之外,该请求还包含以下字段:

多段线

populatePolylinespopulateTransitionPolylines 用于指定路线优化功能是否应返回多段线。

该服务使用 Maps JS 多段线编解码器对多段线进行编码,该编解码器使用可打印的 ASCII 字符表示二进制多段线数据。您可以使用交互式多段线编码器实用程序直观呈现路线优化功能计算出的路径。本指南中的示例将 populatePolylinespopulateTransitionPolylines 设置为 true,但其他指南将其设置为 false,以缩减响应大小。

如需编码格式的说明,请参阅编码多段线算法格式

全局时间限制

model.globalStartTimemodel.globalEndTime 设置为任意 24 小时时段。这样可以更轻松地解读输出时间戳。

访问地点

示例请求仅使用 model.shipments[].pickups[].arrivalLocationmodel.shipments[].deliveries[].arrivalLocation。此外,还有一个 departureLocation 属性,适用于车辆从到达地点不同的位置离开的情况,例如停车场,其入口位于建筑物的一侧,而出口位于另一侧。在此指南及后续指南中,我们假定到达点和出发点相同。

到达和出发 waypoint 也可用作 latLng 的替代方案。Waypoint 字段支持使用 Google 地点 ID 作为 LatLng 的替代方案,还可以指定车辆航向。如需了解详情,请参阅参考文档 (RESTgRPC)。

示例中的约束条件

这种场景会在多方面限制优化器:

  1. 所有活动都必须在全球开始时间和结束时间之间完成。在这种情况下,由于运输时间很接近,并且全球时间范围很广,因此开始时间和结束时间限制非常宽松。
  2. 所有发货都必须完成。这是在 shipments 上未指定违约金费用时的默认行为。
  3. 在车辆上设置 costPerKilometercostPerHour

费用模型参数中介绍了费用。

路线优化响应属性

查看示例请求的响应

    {
      "routes": [
        {
          "vehicleStartTime": "2023-01-14T00:00:00Z",
          "vehicleEndTime": "2023-01-14T00:36:41Z",
          "visits": [
            {
              "shipmentIndex": 2,
              "isPickup": true,
              "startTime": "2023-01-14T00:00:00Z",
              "detour": "0s"
            },
            {
              "shipmentIndex": 1,
              "isPickup": true,
              "startTime": "2023-01-14T00:02:30Z",
              "detour": "150s"
            },
            {
              "isPickup": true,
              "startTime": "2023-01-14T00:05:00Z",
              "detour": "300s"
            },
            {
              "startTime": "2023-01-14T00:11:25Z",
              "detour": "0s"
            },
            {
              "shipmentIndex": 1,
              "startTime": "2023-01-14T00:19:29Z",
              "detour": "503s"
            },
            {
              "shipmentIndex": 2,
              "startTime": "2023-01-14T00:29:02Z",
              "detour": "1324s"
            }
          ],
          "transitions": [
            {
              "travelDuration": "0s",
              "waitDuration": "0s",
              "totalDuration": "0s",
              "startTime": "2023-01-14T00:00:00Z",
              "routePolyline": {}
            },
            {
              "travelDuration": "0s",
              "waitDuration": "0s",
              "totalDuration": "0s",
              "startTime": "2023-01-14T00:02:30Z",
              "routePolyline": {}
            },
            {
              "travelDuration": "0s",
              "waitDuration": "0s",
              "totalDuration": "0s",
              "startTime": "2023-01-14T00:05:00Z",
              "routePolyline": {}
            },
            {
              "travelDuration": "235s",
              "travelDistanceMeters": 795,
              "waitDuration": "0s",
              "totalDuration": "235s",
              "startTime": "2023-01-14T00:07:30Z",
              "routePolyline": {
                "points": "kvteFtfjVAA?C?C@C?A?C@AFMj@s@JKb@k@Zc@LSjA}ARWDGdAxAdAvAXa@@k@AsA\\c@FKp@_A\\c@Ze@fA{ALSFGd@o@rAgBB{BZc@"
              }
            },
            {
              "travelDuration": "234s",
              "travelDistanceMeters": 793,
              "waitDuration": "0s",
              "totalDuration": "234s",
              "startTime": "2023-01-14T00:15:35Z",
              "routePolyline": {
                "points": "cwseFti_jVRWj@w@x@eAHLNRHJbApAHLX\\V^?@hA~AT\\PVFFDHDFJNp@~@NRLNNTFFUZIJY^Y^g@p@[`@KP{@fAEFSXe@l@c@h@WZY\\?BELk@v@MNa@l@"
              }
            },
            {
              "travelDuration": "323s",
              "travelDistanceMeters": 1204,
              "waitDuration": "0s",
              "totalDuration": "323s",
              "startTime": "2023-01-14T00:23:39Z",
              "routePolyline": {
                "points": "cuseFhjVSTY`@Yb@GHEDIJEF]f@IJi@r@oAbBeCfDKLaApAKNQVIPKPCDQJIBIBM@iAJeALqBVC@C?A?QBYDI@C?_@Dc@FO@a@FDp@HfAHvABVDl@Dj@PpCQDiALsALAQASKwAOgBEe@COCYEa@Es@Eg@"
              }
            },
            {
              "travelDuration": "209s",
              "travelDistanceMeters": 665,
              "waitDuration": "0s",
              "totalDuration": "209s",
              "startTime": "2023-01-14T00:33:12Z",
              "routePolyline": {
                "points": "{zteFxbajV?CAYEc@AMC_@AOAK?E?CCWAOAKCe@CY?WScDEm@d@EFA\\ENCB?XEVC^E`@EhBUVCNEB?@?\\Er@IMUe@k@k@w@AAMQa@i@SWQWMQi@u@AC?A"
              }
            }
          ],
          "routePolyline": {
            "points": "kvteFtfjVAA?C?C@C?A?C@AFMj@s@JKb@k@Zc@LSjA}ARWDGdAxAdAvAXa@@k@AsA\\c@FKp@_A\\c@Ze@fA{ALSFGd@o@rAgBB{BZc@RWj@w@x@eAHLNRHJbApAHLX\\V^?@hA~AT\\PVFFDHDFJNp@~@NRLNNTFFUZIJY^Y^g@p@[@KP{@fAEFSXe@l@c@h@WZY\\?BELk@v@MNa@l@STY@Yb@GHEDIJEF]f@IJi@r@oAbBeCfDKLaApAKNQVIPKPCDQJIBIBM@iAJeALqBVC@C?A?QBYDI@C?_@Dc@FO@a@FDp@HfAHvABVDl@Dj@PpCQDiALsALAQASKwAOgBEe@COCYEa@Es@Eg@?CAYEc@AMC_@AOAK?E?CCWAOAKCe@CY?WScDEm@d@EFA\\ENCB?XEVC^E`@EhBUVCNEB?@?\\Er@IMUe@k@k@w@AAMQa@i@SWQWMQi@u@AC?A"
          },
          "metrics": {
            "performedShipmentCount": 3,
            "travelDuration": "1001s",
            "waitDuration": "0s",
            "delayDuration": "0s",
            "breakDuration": "0s",
            "visitDuration": "1200s",
            "totalDuration": "2201s",
            "travelDistanceMeters": 3457
          },
          "travelSteps": [
            {
              "duration": "0s",
              "routePolyline": {}
            },
            {
              "duration": "0s",
              "routePolyline": {}
            },
            {
              "duration": "0s",
              "routePolyline": {}
            },
            {
              "duration": "227s",
              "distanceMeters": 794,
              "routePolyline": {
                "points": "kvteFtfjVAA?C?C@C?A?C@AFMj@s@JKb@k@Zc@LSjA}ARWDGdAxAdAvAXa@@k@AsA\\c@FKp@_A\\c@Ze@fA{ALSFGd@o@rAgBB{BZc@"
              }
            },
            {
              "duration": "233s",
              "distanceMeters": 791,
              "routePolyline": {
                "points": "cwseFti_jVRWj@w@x@eAHLNRHJbApAHLX\\V^?@hA~AT\\PVFFDHDFJNp@~@NRLNNTFFUZIJY^Y^g@p@[`@KP{@fAEFSXe@l@c@h@WZY\\?BELk@v@MNa@l@"
              }
            },
            {
              "duration": "322s",
              "distanceMeters": 1205,
              "routePolyline": {
                "points": "cuseFhjVSTY`@Yb@GHEDIJEF]f@IJi@r@oAbBeCfDKLaApAKNQVIPKPCDQJIBIBM@iAJeALqBVC@C?A?QBYDI@C?_@Dc@FO@a@FDp@HfAHvABVDl@Dj@PpCQDiALsALAQASKwAOgBEe@COCYEa@Es@Eg@"
              }
            },
            {
              "duration": "208s",
              "distanceMeters": 666,
              "routePolyline": {
                "points": "{zteFxbajV?CAYEc@AMC_@AOAK?E?CCWAOAKCe@CY?WScDEm@d@EFA\\ENCB?XEVC^E`@EhBUVCNEB?@?\\Er@IMUe@k@k@w@AAMQa@i@SWQWMQi@u@AC?A"
              }
            }
          ],
          "vehicleDetour": "2201s",
          "routeCosts": {
            "model.vehicles.cost_per_hour": 24.455555555555556,
            "model.vehicles.cost_per_kilometer": 34.57
          },
          "routeTotalCost": 59.025555555555556
        }
      ],
      "totalCost": 59.025555555555556,
      "metrics": {
        "aggregatedRouteMetrics": {
          "performedShipmentCount": 3,
          "travelDuration": "1001s",
          "waitDuration": "0s",
          "delayDuration": "0s",
          "breakDuration": "0s",
          "visitDuration": "1200s",
          "totalDuration": "2201s",
          "travelDistanceMeters": 3457
        },
        "usedVehicleCount": 1,
        "earliestVehicleStartTime": "2023-01-14T00:00:00Z",
        "latestVehicleEndTime": "2023-01-14T00:36:41Z",
        "totalCost": 59.025555555555556,
        "costs": {
          "model.vehicles.cost_per_kilometer": 34.57,
          "model.vehicles.cost_per_hour": 24.455555555555556
        }
      }
    }
    

路线优化响应包含一个顶级 routes 字段,用于表示建议的路线,每个车辆对应一条路线。由于本指南中的示例请求仅指定了一辆车辆,因此 routes 包含一条 ShipmentRoute 消息。

ShipmentRoute 个房源

ShipmentRoute 消息类型的两个最重要的属性是 visitstransitions

每个 Visit 都表示完成了来自请求消息的某个 VisitRequest 的接货或送货。访问是指为车辆分配的工作,需要在某个地点和时间完成。

每个 Transition 都表示从一个位置驶向另一个位置的车辆。过渡可以发生在车辆的起点、光顾地点和车辆的终点之间。

如需重建车辆的完整路线,必须将 ShipmentRoutevisitstransitions 合并。将这些字段组合成车辆活动的进度如下所示:

request.vehicles[0].startLocation -> transitions[0] -> visits[0] ->
transitions[1] -> visits[1] -> transitions[2] -> ... -> visits[3] ->
transitions[4] -> request.vehicles[0].endLocation

ShipmentRoute 始终比 visits 多 1 个 transitions,因为车辆必须在路线开始时从起始位置前往首次访问地点,并在路线结束时从最后一次访问地点前往结束位置。如果车辆缺少起始位置或终点位置,transitions 仍会比 visits 多 1 个,因为系统会将首次或最近一次访问的位置分别用作车辆的起始位置或终点位置。

在此示例中,前三个上车点访问之间存在转接,且距离和时长均为零,因为这三个上车点在请求中具有相同的位置。

如需了解详情,请参阅 ShipmentRoute 参考文档(RESTgRPC)。

简单的路径点顺序优化

如此示例所示,路线优化会将访问点建模为运输的属性,而不会将路点或经停点视为独立实体。不过,您可以将经停点或航点表示为包含确切一个 VisitRequest 作为上门取件或送货地址的运输。车辆仍必须分配 costPerHourcostPerKilometer,以便优化器找到最佳路线(而不是找到任何可行路线)。