OptimizeToursRequest
aplica restrições aos seguintes itens:
- Frete, afetando a forma como os envios são realizados
- Veículos, afetando a forma como as rotas dos veículos são calculadas
- Em todo o mundo, afetando veículos e remessas.
Este guia se concentra em uma restrição de envio essencial: janelas de tempo.
As janelas de tempo são um tipo de restrição que você fornece na
mensagem OptimizeToursRequest
(REST, gRPC) para especificar
limites baseados em tempo para atividades de envio. Esse tipo de restrição influencia
quando e como um envio pode ser realizado, além da atribuição de veículo
para o envio. Com essas restrições, o otimizador dá preferência aos veículos que podem atender melhor às restrições de tempo do envio.
Restrições de envio: janelas de tempo
Especifique quando uma retirada ou entrega pode ocorrer na mensagem Shipment.VisitRequest
da seguinte maneira:
- Use a propriedade
timeWindows
na mensagem (REST, gRPC) - Especifique o horário de início e término na mensagem
TimeWindow
(REST, gRPC).
Exemplo de solicitação com restrições de janela de tempo
O exemplo aqui ilustra três remessas diferentes, cada uma com o próprio
período de entrega. Para simplificar, este exemplo define janelas de tempo apenas em deliveries
, mas elas também podem ser aplicadas a retiradas. Várias janelas de tempo podem
ser especificadas, mas este exemplo usa apenas uma por VisitRequest
de entrega.
Confira um exemplo de solicitação com janelas de tempo
{ "populatePolylines": false, "populateTransitionPolylines": false, "model": { "globalStartTime": "2023-01-13T16:00:00Z", "globalEndTime": "2023-01-14T16:00:00Z", "shipments": [ { "deliveries": [ { "arrivalLocation": { "latitude": 37.789456, "longitude": -122.390192 }, "duration": "250s", "timeWindows": [ { "startTime": "2023-01-13T18:00:00Z", "endTime": "2023-01-13T19:00:00Z" } ] } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 100.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.789116, "longitude": -122.395080 }, "duration": "250s", "timeWindows": [ { "startTime": "2023-01-13T18:00:00Z", "endTime": "2023-01-13T18:30:00Z" } ] } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 20.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.795242, "longitude": -122.399347 }, "duration": "250s", "timeWindows": [ { "startTime": "2023-01-13T17:30:00Z", "endTime": "2023-01-13T18:00:00Z" } ] } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 50.0 } ], "vehicles": [ { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerHour": 40.0, "costPerKilometer": 10.0 } ] } }
Exemplo de resposta com restrições de janela de tempo
Na resposta de exemplo, o horário de início e término do veículo são 17:35:50 e 18:17:24, respectivamente. Esses tempos refletem o otimizador minimizando o tempo
necessário para operar o veículo especificado na solicitação como costPerHour
,
satisfazendo todas as restrições de janela de tempo. Usar 17:35:50 como horário de início
elimina a necessidade de o veículo esperar em um local de visita até que
a janela de tempo da visita comece. Isso aparece na resposta como valores waitDuration
nulos.
Confira uma resposta para a solicitação de exemplo com janelas de tempo
{ "routes": [ { "vehicleStartTime": "2023-01-13T17:35:50Z", "vehicleEndTime": "2023-01-13T18:17:24Z", "visits": [ { "isPickup": true, "startTime": "2023-01-13T17:35:50Z", "detour": "0s" }, { "shipmentIndex": 1, "isPickup": true, "startTime": "2023-01-13T17:38:20Z", "detour": "150s" }, { "shipmentIndex": 2, "isPickup": true, "startTime": "2023-01-13T17:40:50Z", "detour": "300s" }, { "shipmentIndex": 2, "startTime": "2023-01-13T17:50:09Z", "detour": "0s" }, { "shipmentIndex": 1, "startTime": "2023-01-13T18:00:00Z", "detour": "796s" }, { "startTime": "2023-01-13T18:07:35Z", "detour": "1520s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-13T17:35:50Z" }, { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-13T17:38:20Z" }, { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-13T17:40:50Z" }, { "travelDuration": "409s", "travelDistanceMeters": 1371, "waitDuration": "0s", "totalDuration": "409s", "startTime": "2023-01-13T17:43:20Z" }, { "travelDuration": "341s", "travelDistanceMeters": 1312, "waitDuration": "0s", "totalDuration": "341s", "startTime": "2023-01-13T17:54:19Z" }, { "travelDuration": "205s", "travelDistanceMeters": 636, "waitDuration": "0s", "totalDuration": "205s", "startTime": "2023-01-13T18:04:10Z" }, { "travelDuration": "339s", "travelDistanceMeters": 1276, "waitDuration": "0s", "totalDuration": "339s", "startTime": "2023-01-13T18:11:45Z" } ], "metrics": { "performedShipmentCount": 3, "travelDuration": "1294s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "1200s", "totalDuration": "2494s", "travelDistanceMeters": 4595 }, "routeCosts": { "model.vehicles.cost_per_hour": 27.711111111111112, "model.vehicles.cost_per_kilometer": 45.95 }, "routeTotalCost": 73.661111111111111 } ], "metrics": { "aggregatedRouteMetrics": { "performedShipmentCount": 3, "travelDuration": "1294s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "1200s", "totalDuration": "2494s", "travelDistanceMeters": 4595 }, "usedVehicleCount": 1, "earliestVehicleStartTime": "2023-01-13T17:35:50Z", "latestVehicleEndTime": "2023-01-13T18:17:24Z", "totalCost": 73.661111111111111, "costs": { "model.vehicles.cost_per_hour": 27.711111111111112, "model.vehicles.cost_per_kilometer": 45.95 } } }
As janelas de tempo ordenaram o visits
do veículo para que os envios com as
janelas de tempo mais antigas sejam entregues primeiro.
shipments[2]
é entregue às 17h50shipments[1]
é entregue às 18hshipments[0]
é entregue às 18h07
A solicitação de exemplo especifica restrições de janela de tempo rígidas, exigindo que as entregas sejam concluídas dentro dessas janelas. Se a conclusão do
VisitRequests
de um envio em qualquer uma das janelas de tempo não for viável ou
econômica, o otimizador vai pular o envio. Se o envio tiver um
penaltyCost
, o otimizador vai adicioná-lo aos custos informados na resposta
metrics
. Caso contrário, a propriedade skippedMandatoryShipmentCount
da mensagem
OptimizeToursResponse
(REST, gRPC) aumenta.
Se você mudar as janelas de tempo deslocando a janela de shipment[1]
várias horas
mais tarde (para 21h em vez de 18h), os resultados serão diferentes, conforme ilustrado nos
exemplos a seguir.
Confira um exemplo de solicitação com janelas de tempo que não podem ser atendidas
{ "populatePolylines": false, "populateTransitionPolylines": false, "model": { "globalStartTime": "2023-01-13T16:00:00Z", "globalEndTime": "2023-01-14T16:00:00Z", "shipments": [ { "deliveries": [ { "arrivalLocation": { "latitude": 37.789456, "longitude": -122.390192 }, "duration": "250s", "timeWindows": [ { "startTime": "2023-01-13T18:00:00Z", "endTime": "2023-01-13T19:00:00Z" } ] } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 100.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.789116, "longitude": -122.395080 }, "duration": "250s", "timeWindows": [ { "startTime": "2023-01-13T21:00:00Z", "endTime": "2023-01-13T21:30:00Z" } ] } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 20.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.795242, "longitude": -122.399347 }, "duration": "250s", "timeWindows": [ { "startTime": "2023-01-13T17:30:00Z", "endTime": "2023-01-13T18:00:00Z" } ] } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 50.0 } ], "vehicles": [ { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerHour": 40.0, "costPerKilometer": 10.0 } ] } }
Confira uma resposta ao segundo exemplo de solicitação com janelas de tempo, em que um envio é ignorado
{ "routes": [ { "vehicleStartTime": "2023-01-13T17:37:49Z", "vehicleEndTime": "2023-01-13T18:09:49Z", "visits": [ { "isPickup": true, "startTime": "2023-01-13T17:37:49Z", "detour": "0s" }, { "shipmentIndex": 2, "isPickup": true, "startTime": "2023-01-13T17:40:19Z", "detour": "150s" }, { "shipmentIndex": 2, "startTime": "2023-01-13T17:49:38Z", "detour": "0s" }, { "startTime": "2023-01-13T18:00:00Z", "detour": "946s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-13T17:37:49Z" }, { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-13T17:40:19Z" }, { "travelDuration": "409s", "travelDistanceMeters": 1371, "waitDuration": "0s", "totalDuration": "409s", "startTime": "2023-01-13T17:42:49Z" }, { "travelDuration": "372s", "travelDistanceMeters": 1348, "waitDuration": "0s", "totalDuration": "372s", "startTime": "2023-01-13T17:53:48Z" }, { "travelDuration": "339s", "travelDistanceMeters": 1276, "waitDuration": "0s", "totalDuration": "339s", "startTime": "2023-01-13T18:04:10Z" } ], "metrics": { "performedShipmentCount": 2, "travelDuration": "1120s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "800s", "totalDuration": "1920s", "travelDistanceMeters": 3995 }, "routeCosts": { "model.vehicles.cost_per_kilometer": 39.95, "model.vehicles.cost_per_hour": 21.333333333333332 }, "routeTotalCost": 61.283333333333331 } ], "skippedShipments": [ { "index": 1 } ], "metrics": { "aggregatedRouteMetrics": { "performedShipmentCount": 2, "travelDuration": "1120s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "800s", "totalDuration": "1920s", "travelDistanceMeters": 3995 }, "usedVehicleCount": 1, "earliestVehicleStartTime": "2023-01-13T17:37:49Z", "latestVehicleEndTime": "2023-01-13T18:09:49Z", "totalCost": 81.283333333333331, "costs": { "model.shipments.penalty_cost": 20, "model.vehicles.cost_per_hour": 21.333333333333332, "model.vehicles.cost_per_kilometer": 39.95 } } }
Neste exemplo, o período mais recente fez com que shipment[1]
fosse ignorado,
porque o tempo de operação extra do veículo necessário para concluir a entrega
dentro do período especificado excedeu o custo da multa do envio.
O custo da penalidade para shipment[1]
aparece em metrics.costs
, e o índice
aparece em skippedShipments
.
Restrições flexíveis de janela de tempo
Conforme mencionado brevemente em Parâmetros do modelo de custo, as janelas de tempo podem ser aplicadas como restrições flexíveis. As restrições flexíveis diferem das rígidas da seguinte maneira:
- Restrições rígidas: não podem ser violadas, e o otimizador não oferece uma solução que viole a restrição, mesmo que isso signifique pular um envio.
- Restrições flexíveis: podem ser violadas, o que significa que o otimizador pode oferecer uma solução que viola uma restrição flexível. No entanto, o otimizador também aplica um custo a qualquer violação. Você fornece esse custo como uma propriedade adicional na janela de tempo, normalmente como um custo por hora para cada hora antes ou depois da janela de tempo em que a atividade ocorre.
As janelas de tempo são suavizadas usando softStartTime
ou softEndTime
em vez de
startTime
ou endTime
, respectivamente, e definindo
costPerHourBeforeSoftStartTime
ou costPerHourAfterSoftEndTime
.
Use restrições de janela de tempo flexível quando as retiradas ou entregas devem ocorrer em uma janela de tempo especificada, mas a retirada ou entrega nessa janela não é absolutamente necessária. É possível usar restrições de janela de tempo rígidas e flexíveis juntas para expressar objetivos de negócios. Exemplo:
- Janela de tempo fixa: indica o horário de funcionamento de um cliente, por exemplo, das 9h às 17h.
- Período flexível: indica o período de entrega ou retirada que corresponde à notificação enviada ao cliente, por exemplo, das 9h às 13h.
Neste exemplo, a restrição de horário de início do envio que foi pulado anteriormente porque a janela de tempo começou muito tarde foi suavizada. As janelas de tempo dos outros envios também foram reduzidas.
Confira um exemplo de solicitação com janelas de tempo rígidas e flexíveis
{ "populatePolylines": false, "populateTransitionPolylines": false, "model": { "globalStartTime": "2023-01-13T16:00:00Z", "globalEndTime": "2023-01-14T16:00:00Z", "shipments": [ { "deliveries": [ { "arrivalLocation": { "latitude": 37.789456, "longitude": -122.390192 }, "duration": "250s", "timeWindows": [ { "startTime": "2023-01-13T18:00:00Z", "softEndTime": "2023-01-13T19:00:00Z", "costPerHourAfterSoftEndTime": 2.0 } ] } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 100.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.789116, "longitude": -122.395080 }, "duration": "250s", "timeWindows": [ { "softStartTime": "2023-01-13T21:00:00Z", "endTime": "2023-01-13T21:30:00Z", "costPerHourBeforeSoftStartTime": 2.0 } ] } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 20.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.795242, "longitude": -122.399347 }, "duration": "250s", "timeWindows": [ { "startTime": "2023-01-13T17:30:00Z", "softEndTime": "2023-01-13T18:00:00Z", "costPerHourAfterSoftEndTime": 2.0 } ] } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 50.0 } ], "vehicles": [ { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerHour": 40.0, "costPerKilometer": 10.0 } ] } }
Confira uma resposta ao exemplo de solicitação com janelas de tempo rígidas e flexíveis
{ "routes": [ { "vehicleStartTime": "2023-01-13T17:48:35Z", "vehicleEndTime": "2023-01-13T18:24:28Z", "visits": [ { "isPickup": true, "startTime": "2023-01-13T17:48:35Z", "detour": "0s" }, { "shipmentIndex": 1, "isPickup": true, "startTime": "2023-01-13T17:51:05Z", "detour": "150s" }, { "shipmentIndex": 2, "isPickup": true, "startTime": "2023-01-13T17:53:35Z", "detour": "300s" }, { "startTime": "2023-01-13T18:00:00Z", "detour": "300s" }, { "shipmentIndex": 1, "startTime": "2023-01-13T18:07:42Z", "detour": "493s" }, { "shipmentIndex": 2, "startTime": "2023-01-13T18:17:27Z", "detour": "873s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-13T17:48:35Z" }, { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-13T17:51:05Z" }, { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-13T17:53:35Z" }, { "travelDuration": "235s", "travelDistanceMeters": 795, "waitDuration": "0s", "totalDuration": "235s", "startTime": "2023-01-13T17:56:05Z" }, { "travelDuration": "212s", "travelDistanceMeters": 791, "waitDuration": "0s", "totalDuration": "212s", "startTime": "2023-01-13T18:04:10Z" }, { "travelDuration": "335s", "travelDistanceMeters": 1204, "waitDuration": "0s", "totalDuration": "335s", "startTime": "2023-01-13T18:11:52Z" }, { "travelDuration": "171s", "travelDistanceMeters": 665, "waitDuration": "0s", "totalDuration": "171s", "startTime": "2023-01-13T18:21:37Z" } ], "metrics": { "performedShipmentCount": 3, "travelDuration": "953s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "1200s", "totalDuration": "2153s", "travelDistanceMeters": 3455 }, "routeCosts": { "model.shipments.deliveries.time_windows.cost_per_hour_after_soft_end_time": 0.58166666666666667, "model.shipments.deliveries.time_windows.cost_per_hour_before_soft_start_time": 5.7433333333333332, "model.vehicles.cost_per_hour": 23.922222222222221, "model.vehicles.cost_per_kilometer": 34.55 }, "routeTotalCost": 64.797222222222217 } ], "metrics": { "aggregatedRouteMetrics": { "performedShipmentCount": 3, "travelDuration": "953s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "1200s", "totalDuration": "2153s", "travelDistanceMeters": 3455 }, "usedVehicleCount": 1, "earliestVehicleStartTime": "2023-01-13T17:48:35Z", "latestVehicleEndTime": "2023-01-13T18:24:28Z", "totalCost": 64.797222222222217, "costs": { "model.vehicles.cost_per_kilometer": 34.55, "model.shipments.deliveries.time_windows.cost_per_hour_before_soft_start_time": 5.7433333333333332, "model.shipments.deliveries.time_windows.cost_per_hour_after_soft_end_time": 0.58166666666666667, "model.vehicles.cost_per_hour": 23.922222222222221 } } }
Onde o exemplo com apenas restrições de janela de tempo rígido pula completamente
shipment[1]
, a janela de tempo de entrega é suavizada e é entregue
antes do início da janela de tempo. Da mesma forma, a redução dos horários finais dos
outros envios permitiu que o shipment[2]
fosse entregue após o término do período
de tempo.
Ao mesmo tempo, os custos e o total de envios mudaram:
totalCost
: diminuiu de 81,283 para 64,797- total de envios concluídos: aumentou de 2 para 3
O otimizador encontrou uma solução mais barata porque as restrições de janela de tempo foram relaxadas em comparação com o exemplo anterior.
Por fim, a propriedade metrics.costs
também inclui uma nova chave para indicar o
custo real incorrido com base no produto da restrição e no período de
tempo em que o prazo de entrega foi perdido. Ou seja:
costPerHourBeforeSoftStartTime
de 2,0 e- o tempo entre a entrega real e o início do período: 2,83583 horas
Resultado:
model.shipments.deliveries.time_windows.cost_per_hour_before_soft_start_time
:
5,6716666666666669.
Essas métricas permitem fazer uma análise de custo para saber a troca entre restrições
rígidas e flexíveis, que podem ser usadas para ajustar as restrições
de acordo com suas regras de negócios específicas. Nesse caso, o custo total é menor que shipment[1].penalty_cost
de 20,0. O otimizador identificou
que é mais econômico entregar o envio com antecedência do que
pular o envio.