Exemplo: janelas de tempo

Este exemplo mostra como usar timeWindows para definir horários de retirada e entrega de remessas.

Para uma visão geral conceitual completa e saber mais maneiras de usar timeWindows, consulte o documento Conceito principal de períodos de tempo.

Cenário 1: entrega dentro de períodos

O exemplo a seguir demonstra um cenário em que um único veículo precisa entregar três remessas dentro do timeWindows especificado.

Exemplo de solicitação

Essa solicitação inclui três remessas, cada uma com uma TimeWindow de entrega diferente:

  • shipments[0] Prazo de entrega: das 18h às 19h
  • shipments[1] prazo de entrega: 18:00 - 18:30
  • shipments[2] prazo de entrega: 17h30 às 18h

Confira um exemplo de solicitação com janelas de tempo

{
  "populatePolylines": false,
  "populateTransitionPolylines": false,
  "model": {
    "globalStartTime": "2023-01-13T16:00:00Z",
    "globalEndTime": "2023-01-14T16:00:00Z",
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "endTime": "2023-01-13T19:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "endTime": "2023-01-13T18:30:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 20.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T17:30:00Z",
                "endTime": "2023-01-13T18:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 40.0,
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

Exemplo de resposta

A resposta mostra que o otimizador programa cada um dos visits para respeitar as janelas de tempo, entregando primeiro os envios com janelas mais cedo.

Confira uma resposta ao exemplo de solicitação com intervalos de tempo

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-13T17:35:50Z",
      "vehicleEndTime": "2023-01-13T18:17:24Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-13T17:35:50Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 1,
          "isPickup": true,
          "startTime": "2023-01-13T17:38:20Z",
          "detour": "150s"
        },
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-13T17:40:50Z",
          "detour": "300s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-13T17:50:09Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 1,
          "startTime": "2023-01-13T18:00:00Z",
          "detour": "796s"
        },
        {
          "startTime": "2023-01-13T18:07:35Z",
          "detour": "1520s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:35:50Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:38:20Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:40:50Z"
        },
        {
          "travelDuration": "409s",
          "travelDistanceMeters": 1371,
          "waitDuration": "0s",
          "totalDuration": "409s",
          "startTime": "2023-01-13T17:43:20Z"
        },
        {
          "travelDuration": "341s",
          "travelDistanceMeters": 1312,
          "waitDuration": "0s",
          "totalDuration": "341s",
          "startTime": "2023-01-13T17:54:19Z"
        },
        {
          "travelDuration": "205s",
          "travelDistanceMeters": 636,
          "waitDuration": "0s",
          "totalDuration": "205s",
          "startTime": "2023-01-13T18:04:10Z"
        },
        {
          "travelDuration": "339s",
          "travelDistanceMeters": 1276,
          "waitDuration": "0s",
          "totalDuration": "339s",
          "startTime": "2023-01-13T18:11:45Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 3,
        "travelDuration": "1294s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "1200s",
        "totalDuration": "2494s",
        "travelDistanceMeters": 4595
      },
      "routeCosts": {
        "model.vehicles.cost_per_hour": 27.711111111111112,
        "model.vehicles.cost_per_kilometer": 45.95
      },
      "routeTotalCost": 73.661111111111111
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 3,
      "travelDuration": "1294s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "1200s",
      "totalDuration": "2494s",
      "travelDistanceMeters": 4595
    },
    "usedVehicleCount": 1,
    "earliestVehicleStartTime": "2023-01-13T17:35:50Z",
    "latestVehicleEndTime": "2023-01-13T18:17:24Z",
    "totalCost": 73.661111111111111,
    "costs": {
      "model.vehicles.cost_per_hour": 27.711111111111112,
      "model.vehicles.cost_per_kilometer": 45.95
    }
  }
}
    

A entrega startTime de cada envio está dentro da janela solicitada:

  • shipments[2] é entregue às 17h50 (dentro da janela das 17h30 às 18h).
  • O shipments[1] é entregue às 18h (dentro da janela das 18h às 18h30).
  • shipments[0] é entregue às 18h07 (dentro da janela das 18h às 19h).

Cenário 2: pular uma entrega devido a janelas de tempo

O exemplo a seguir demonstra um cenário em que a janela de tempo de uma remessa está muito distante das outras, tornando mais econômico para o otimizador pular a remessa e pagar a penaltyCost.

Exemplo de solicitação

Essa solicitação é igual ao primeiro cenário, exceto que a janela de entrega de um envio é em um horário diferente, muito mais tarde no dia.

  • O prazo de entrega de shipments[1] agora é das 21h às 21h30

Confira um exemplo de solicitação com intervalos de tempo que não podem ser atendidos

{
  "populatePolylines": false,
  "populateTransitionPolylines": false,
  "model": {
    "globalStartTime": "2023-01-13T16:00:00Z",
    "globalEndTime": "2023-01-14T16:00:00Z",
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "endTime": "2023-01-13T19:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T21:00:00Z",
                "endTime": "2023-01-13T21:30:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 20.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T17:30:00Z",
                "endTime": "2023-01-13T18:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 40.0,
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

Exemplo de resposta

A resposta mostra que o otimizador pula shipment[1]. Isso acontece porque, para entregar a remessa, o veículo teria que operar por várias horas extras, e o custo calculado para esse período é maior do que o penaltyCost de 20,0 da remessa.

Confira uma resposta ao exemplo de solicitação com janelas de tempo em que um envio é ignorado

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-13T17:37:49Z",
      "vehicleEndTime": "2023-01-13T18:09:49Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-13T17:37:49Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-13T17:40:19Z",
          "detour": "150s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-13T17:49:38Z",
          "detour": "0s"
        },
        {
          "startTime": "2023-01-13T18:00:00Z",
          "detour": "946s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:37:49Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:40:19Z"
        },
        {
          "travelDuration": "409s",
          "travelDistanceMeters": 1371,
          "waitDuration": "0s",
          "totalDuration": "409s",
          "startTime": "2023-01-13T17:42:49Z"
        },
        {
          "travelDuration": "372s",
          "travelDistanceMeters": 1348,
          "waitDuration": "0s",
          "totalDuration": "372s",
          "startTime": "2023-01-13T17:53:48Z"
        },
        {
          "travelDuration": "339s",
          "travelDistanceMeters": 1276,
          "waitDuration": "0s",
          "totalDuration": "339s",
          "startTime": "2023-01-13T18:04:10Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 2,
        "travelDuration": "1120s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "800s",
        "totalDuration": "1920s",
        "travelDistanceMeters": 3995
      },
      "routeCosts": {
        "model.vehicles.cost_per_kilometer": 39.95,
        "model.vehicles.cost_per_hour": 21.333333333333332
      },
      "routeTotalCost": 61.283333333333331
    }
  ],
  "skippedShipments": [
    {
      "index": 1
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 2,
      "travelDuration": "1120s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "800s",
      "totalDuration": "1920s",
      "travelDistanceMeters": 3995
    },
    "usedVehicleCount": 1,
    "earliestVehicleStartTime": "2023-01-13T17:37:49Z",
    "latestVehicleEndTime": "2023-01-13T18:09:49Z",
    "totalCost": 81.283333333333331,
    "costs": {
      "model.shipments.penalty_cost": 20,
      "model.vehicles.cost_per_hour": 21.333333333333332,
      "model.vehicles.cost_per_kilometer": 39.95
    }
  }
}
    

A matriz skippedShipments na resposta mostra que o envio com index: 1 não foi realizado, o que afeta os seguintes parâmetros de custo:

Cenário 3: usar janelas de tempo flexíveis

O exemplo a seguir mostra como usar uma janela de tempo flexível, que permite que o otimizador programe uma entrega fora do período especificado, mas com um custo.

Para uma visão geral conceitual desse recurso, consulte a seção janelas de tempo flexíveis no documento de conceitos-chave das janelas de tempo.

Exemplo de solicitação

Essa solicitação modifica o cenário anterior mudando a janela de tempo rígida para shipment[1] para uma flexível. Isso é feito usando softStartTime e fornecendo um costPerHourBeforeSoftStartTime.

shipment[1] agora tem um softStartTime de 21h e um costPerHourBeforeSoftStartTime de 2,0. Isso significa que uma penalidade é aplicada a cada hora que a entrega é feita antes das 21h.

Confira um exemplo de solicitação com janelas de tempo fixas e flexíveis.

{
  "populatePolylines": false,
  "populateTransitionPolylines": false,
  "model": {
    "globalStartTime": "2023-01-13T16:00:00Z",
    "globalEndTime": "2023-01-14T16:00:00Z",
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "softEndTime": "2023-01-13T19:00:00Z",
                "costPerHourAfterSoftEndTime": 2.0
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s",
            "timeWindows": [
              {
                "softStartTime": "2023-01-13T21:00:00Z",
                "endTime": "2023-01-13T21:30:00Z",
                "costPerHourBeforeSoftStartTime": 2.0
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 20.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T17:30:00Z",
                "softEndTime": "2023-01-13T18:00:00Z",
                "costPerHourAfterSoftEndTime": 2.0
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 40.0,
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

Exemplo de resposta

A resposta mostra que o otimizador agora programa todos os três envios. Ele agenda a entrega de shipment[1] significativamente antes das 21h softStartTime. Essa é a solução mais econômica, já que o custo de violar a janela de tempo flexível é menor do que o penaltyCost de pular a entrega. Além disso, é menor do que o custo de ter um veículo esperando para entregar durante a janela de tempo.

Confira uma resposta ao exemplo de solicitação com janelas de tempo fixas e flexíveis

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-13T17:48:35Z",
      "vehicleEndTime": "2023-01-13T18:24:28Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-13T17:48:35Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 1,
          "isPickup": true,
          "startTime": "2023-01-13T17:51:05Z",
          "detour": "150s"
        },
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-13T17:53:35Z",
          "detour": "300s"
        },
        {
          "startTime": "2023-01-13T18:00:00Z",
          "detour": "300s"
        },
        {
          "shipmentIndex": 1,
          "startTime": "2023-01-13T18:07:42Z",
          "detour": "493s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-13T18:17:27Z",
          "detour": "873s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:48:35Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:51:05Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:53:35Z"
        },
        {
          "travelDuration": "235s",
          "travelDistanceMeters": 795,
          "waitDuration": "0s",
          "totalDuration": "235s",
          "startTime": "2023-01-13T17:56:05Z"
        },
        {
          "travelDuration": "212s",
          "travelDistanceMeters": 791,
          "waitDuration": "0s",
          "totalDuration": "212s",
          "startTime": "2023-01-13T18:04:10Z"
        },
        {
          "travelDuration": "335s",
          "travelDistanceMeters": 1204,
          "waitDuration": "0s",
          "totalDuration": "335s",
          "startTime": "2023-01-13T18:11:52Z"
        },
        {
          "travelDuration": "171s",
          "travelDistanceMeters": 665,
          "waitDuration": "0s",
          "totalDuration": "171s",
          "startTime": "2023-01-13T18:21:37Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 3,
        "travelDuration": "953s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "1200s",
        "totalDuration": "2153s",
        "travelDistanceMeters": 3455
      },
      "routeCosts": {
        "model.shipments.deliveries.time_windows.cost_per_hour_after_soft_end_time": 0.58166666666666667,
        "model.shipments.deliveries.time_windows.cost_per_hour_before_soft_start_time": 5.7433333333333332,
        "model.vehicles.cost_per_hour": 23.922222222222221,
        "model.vehicles.cost_per_kilometer": 34.55
      },
      "routeTotalCost": 64.797222222222217
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 3,
      "travelDuration": "953s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "1200s",
      "totalDuration": "2153s",
      "travelDistanceMeters": 3455
    },
    "usedVehicleCount": 1,
    "earliestVehicleStartTime": "2023-01-13T17:48:35Z",
    "latestVehicleEndTime": "2023-01-13T18:24:28Z",
    "totalCost": 64.797222222222217,
    "costs": {
      "model.vehicles.cost_per_kilometer": 34.55,
      "model.shipments.deliveries.time_windows.cost_per_hour_before_soft_start_time": 5.7433333333333332,
      "model.shipments.deliveries.time_windows.cost_per_hour_after_soft_end_time": 0.58166666666666667,
      "model.vehicles.cost_per_hour": 23.922222222222221
    }
  }
}
    

A janela de tempo flexível resulta em uma solução melhor, que se reflete nas seguintes melhorias:

  • Todos os três envios são programados sem pular nenhum deles.
  • O totalCost agora é 64,79, menor que o custo da solução anterior, que era de 81,28.
  • O objeto routeCosts inclui um custo de 5,74 para entregar shipment[1] quase 3 horas antes do softStartTime. Esse custo é menor que o penaltyCost de 20,0, o que a torna a opção mais econômica.