Package google.type

Index

Color

Represents a color in the RGBA color space. This representation is designed for simplicity of conversion to and from color representations in various languages over compactness. For example, the fields of this representation can be trivially provided to the constructor of java.awt.Color in Java; it can also be trivially provided to UIColor's +colorWithRed:green:blue:alpha method in iOS; and, with just a little work, it can be easily formatted into a CSS rgba() string in JavaScript.

This reference page doesn't have information about the absolute color space that should be used to interpret the RGB value—for example, sRGB, Adobe RGB, DCI-P3, and BT.2020. By default, applications should assume the sRGB color space.

When color equality needs to be decided, implementations, unless documented otherwise, treat two colors as equal if all their red, green, blue, and alpha values each differ by at most 1e-5.

Example (Java):

 import com.google.type.Color;

 // ...
 public static java.awt.Color fromProto(Color protocolor) {
   float alpha = protocolor.hasAlpha()
       ? protocolor.getAlpha().getValue()
       : 1.0;

   return new java.awt.Color(
       protocolor.getRed(),
       protocolor.getGreen(),
       protocolor.getBlue(),
       alpha);
 }

 public static Color toProto(java.awt.Color color) {
   float red = (float) color.getRed();
   float green = (float) color.getGreen();
   float blue = (float) color.getBlue();
   float denominator = 255.0;
   Color.Builder resultBuilder =
       Color
           .newBuilder()
           .setRed(red / denominator)
           .setGreen(green / denominator)
           .setBlue(blue / denominator);
   int alpha = color.getAlpha();
   if (alpha != 255) {
     result.setAlpha(
         FloatValue
             .newBuilder()
             .setValue(((float) alpha) / denominator)
             .build());
   }
   return resultBuilder.build();
 }
 // ...

Example (iOS / Obj-C):

 // ...
 static UIColor* fromProto(Color* protocolor) {
    float red = [protocolor red];
    float green = [protocolor green];
    float blue = [protocolor blue];
    FloatValue* alpha_wrapper = [protocolor alpha];
    float alpha = 1.0;
    if (alpha_wrapper != nil) {
      alpha = [alpha_wrapper value];
    }
    return [UIColor colorWithRed:red green:green blue:blue alpha:alpha];
 }

 static Color* toProto(UIColor* color) {
     CGFloat red, green, blue, alpha;
     if (![color getRed:&red green:&green blue:&blue alpha:&alpha]) {
       return nil;
     }
     Color* result = [[Color alloc] init];
     [result setRed:red];
     [result setGreen:green];
     [result setBlue:blue];
     if (alpha <= 0.9999) {
       [result setAlpha:floatWrapperWithValue(alpha)];
     }
     [result autorelease];
     return result;
}
// ...

Example (JavaScript):

// ...

var protoToCssColor = function(rgb_color) {
   var redFrac = rgb_color.red || 0.0;
   var greenFrac = rgb_color.green || 0.0;
   var blueFrac = rgb_color.blue || 0.0;
   var red = Math.floor(redFrac * 255);
   var green = Math.floor(greenFrac * 255);
   var blue = Math.floor(blueFrac * 255);

   if (!('alpha' in rgb_color)) {
      return rgbToCssColor(red, green, blue);
   }

   var alphaFrac = rgb_color.alpha.value || 0.0;
   var rgbParams = [red, green, blue].join(',');
   return ['rgba(', rgbParams, ',', alphaFrac, ')'].join('');
};

var rgbToCssColor = function(red, green, blue) {
  var rgbNumber = new Number((red << 16) | (green << 8) | blue);
  var hexString = rgbNumber.toString(16);
  var missingZeros = 6 - hexString.length;
  var resultBuilder = ['#'];
  for (var i = 0; i < missingZeros; i++) {
     resultBuilder.push('0');
  }
  resultBuilder.push(hexString);
  return resultBuilder.join('');
};

// ...
Fields
red

float

The amount of red in the color as a value in the interval [0, 1].

green

float

The amount of green in the color as a value in the interval [0, 1].

blue

float

The amount of blue in the color as a value in the interval [0, 1].

alpha

FloatValue

The fraction of this color that should be applied to the pixel. That is, the final pixel color is defined by the equation:

pixel color = alpha * (this color) + (1.0 - alpha) * (background color)

This means that a value of 1.0 corresponds to a solid color, whereas a value of 0.0 corresponds to a completely transparent color. This uses a wrapper message rather than a simple float scalar so that it is possible to distinguish between a default value and the value being unset. If omitted, this color object is rendered as a solid color (as if the alpha value had been explicitly given a value of 1.0).

Date

Represents a whole or partial calendar date, such as a birthday. The time of day and time zone are either specified elsewhere or are insignificant. The date is relative to the Gregorian Calendar. This can represent one of the following:

  • A full date, with non-zero year, month, and day values.
  • A month and day, with a zero year (for example, an anniversary).
  • A year on its own, with a zero month and a zero day.
  • A year and month, with a zero day (for example, a credit card expiration date).

Related types:

Fields
year

int32

Year of the date. Must be from 1 to 9999, or 0 to specify a date without a year.

month

int32

Month of a year. Must be from 1 to 12, or 0 to specify a year without a month and day.

day

int32

Day of a month. Must be from 1 to 31 and valid for the year and month, or 0 to specify a year by itself or a year and month where the day isn't significant.

DateTime

Represents civil time (or occasionally physical time).

This type can represent a civil time in one of a few possible ways:

  • When utc_offset is set and time_zone is unset: a civil time on a calendar day with a particular offset from UTC.
  • When time_zone is set and utc_offset is unset: a civil time on a calendar day in a particular time zone.
  • When neither time_zone nor utc_offset is set: a civil time on a calendar day in local time.

The date is relative to the Proleptic Gregorian Calendar.

If year, month, or day are 0, the DateTime is considered not to have a specific year, month, or day respectively.

This type may also be used to represent a physical time if all the date and time fields are set and either case of the time_offset oneof is set. Consider using Timestamp message for physical time instead. If your use case also would like to store the user's timezone, that can be done in another field.

This type is more flexible than some applications may want. Make sure to document and validate your application's limitations.

Fields
year

int32

Optional. Year of date. Must be from 1 to 9999, or 0 if specifying a datetime without a year.

month

int32

Optional. Month of year. Must be from 1 to 12, or 0 if specifying a datetime without a month.

day

int32

Optional. Day of month. Must be from 1 to 31 and valid for the year and month, or 0 if specifying a datetime without a day.

hours

int32

Optional. Hours of day in 24 hour format. Should be from 0 to 23, defaults to 0 (midnight). An API may choose to allow the value "24:00:00" for scenarios like business closing time.

minutes

int32

Optional. Minutes of hour of day. Must be from 0 to 59, defaults to 0.

seconds

int32

Optional. Seconds of minutes of the time. Must normally be from 0 to 59, defaults to 0. An API may allow the value 60 if it allows leap-seconds.

nanos

int32

Optional. Fractions of seconds in nanoseconds. Must be from 0 to 999,999,999, defaults to 0.

Union field time_offset. Optional. Specifies either the UTC offset or the time zone of the DateTime. Choose carefully between them, considering that time zone data may change in the future (for example, a country modifies their DST start/end dates, and future DateTimes in the affected range had already been stored). If omitted, the DateTime is considered to be in local time. time_offset can be only one of the following:
utc_offset

Duration

UTC offset. Must be whole seconds, between -18 hours and +18 hours. For example, a UTC offset of -4:00 would be represented as { seconds: -14400 }.

time_zone

TimeZone

Time zone.

DayOfWeek

Represents a day of the week.

Enums
DAY_OF_WEEK_UNSPECIFIED The day of the week is unspecified.
MONDAY Monday
TUESDAY Tuesday
WEDNESDAY Wednesday
THURSDAY Thursday
FRIDAY Friday
SATURDAY Saturday
SUNDAY Sunday

Interval

Represents a time interval, encoded as a Timestamp start (inclusive) and a Timestamp end (exclusive).

The start must be less than or equal to the end. When the start equals the end, the interval is empty (matches no time). When both start and end are unspecified, the interval matches any time.

Fields
start_time

Timestamp

Optional. Inclusive start of the interval.

If specified, a Timestamp matching this interval will have to be the same or after the start.

end_time

Timestamp

Optional. Exclusive end of the interval.

If specified, a Timestamp matching this interval will have to be before the end.

PhoneNumber

An object representing a phone number, suitable as an API wire format.

This representation:

  • should not be used for locale-specific formatting of a phone number, such as "+1 (650) 253-0000 ext. 123"

  • is not designed for efficient storage

  • may not be suitable for dialing - specialized libraries (see references) should be used to parse the number for that purpose

To do something meaningful with this number, such as format it for various use-cases, convert it to an i18n.phonenumbers.PhoneNumber object first.

For instance, in Java this would be:

com.google.type.PhoneNumber wireProto =
    com.google.type.PhoneNumber.newBuilder().build();
com.google.i18n.phonenumbers.Phonenumber.PhoneNumber phoneNumber =
    PhoneNumberUtil.getInstance().parse(wireProto.getE164Number(), "ZZ");
if (!wireProto.getExtension().isEmpty()) {
  phoneNumber.setExtension(wireProto.getExtension());
}

Reference(s): - https://github.com/google/libphonenumber

Fields
extension

string

The phone number's extension. The extension is not standardized in ITU recommendations, except for being defined as a series of numbers with a maximum length of 40 digits. Other than digits, some other dialing characters such as ',' (indicating a wait) or '#' may be stored here.

Note that no regions currently use extensions with short codes, so this field is normally only set in conjunction with an E.164 number. It is held separately from the E.164 number to allow for short code extensions in the future.

Union field kind. Required. Either a regular number, or a short code. New fields may be added to the oneof below in the future, so clients should ignore phone numbers for which none of the fields they coded against are set. kind can be only one of the following:
e164_number

string

The phone number, represented as a leading plus sign ('+'), followed by a phone number that uses a relaxed ITU E.164 format consisting of the country calling code (1 to 3 digits) and the subscriber number, with no additional spaces or formatting. For example:

  • correct: "+15552220123"

  • incorrect: "+1 (555) 222-01234 x123"

The ITU E.164 format limits the latter to 12 digits, but in practice not all countries respect that, so we relax that restriction here. National-only numbers are not allowed.

References:

short_code

ShortCode

A short code.

Reference(s): - https://wikipedia.org/wiki/Short_code

ShortCode

An object representing a short code, which is a phone number that is typically much shorter than regular phone numbers and can be used to address messages in MMS and SMS systems, as well as for abbreviated dialing (For example "Text 611 to see how many minutes you have remaining on your plan.").

Short codes are restricted to a region and are not internationally dialable, which means the same short code can exist in different regions, with different usage and pricing, even if those regions share the same country calling code (For example: US and CA).

Fields
region_code

string

Required. The BCP-47 region code of the location where calls to this short code can be made, such as "US" and "BB".

Reference(s): - http://www.unicode.org/reports/tr35/#unicode_region_subtag

number

string

Required. The short code digits, without a leading plus ('+') or country calling code. For example "611".

PostalAddress

Represents a postal address, such as for postal delivery or payments addresses. With a postal address, a postal service can deliver items to a premise, P.O. box, or similar. A postal address is not intended to model geographical locations like roads, towns, or mountains.

In typical usage, an address would be created by user input or from importing existing data, depending on the type of process.

Advice on address input or editing:

  • Use an internationalization-ready address widget such as https://github.com/google/libaddressinput.
  • Users should not be presented with UI elements for input or editing of fields outside countries where that field is used.

For more guidance on how to use this schema, see: https://support.google.com/business/answer/6397478.

Fields
revision

int32

The schema revision of the PostalAddress. This must be set to 0, which is the latest revision.

All new revisions must be backward compatible with old revisions.

region_code

string

Required. CLDR region code of the country/region of the address. This is never inferred and it is up to the user to ensure the value is correct. See https://cldr.unicode.org/ and https://www.unicode.org/cldr/charts/30/supplemental/territory_information.html for details. Example: "CH" for Switzerland.

language_code

string

Optional. BCP-47 language code of the contents of this address (if known). This is often the UI language of the input form or is expected to match one of the languages used in the address' country/region, or their transliterated equivalents. This can affect formatting in certain countries, but is not critical to the correctness of the data and will never affect any validation or other non-formatting related operations.

If this value is not known, it should be omitted (rather than specifying a possibly incorrect default).

Examples: "zh-Hant", "ja", "ja-Latn", "en".

postal_code

string

Optional. Postal code of the address. Not all countries use or require postal codes to be present, but where they are used, they may trigger additional validation with other parts of the address (for example, state or zip code validation in the United States).

sorting_code

string

Optional. Additional, country-specific, sorting code. This is not used in most regions. Where it is used, the value is either a string like "CEDEX", optionally followed by a number (for example, "CEDEX 7"), or just a number alone, representing the "sector code" (Jamaica), "delivery area indicator" (Malawi) or "post office indicator" (Côte d'Ivoire).

administrative_area

string

Optional. Highest administrative subdivision which is used for postal addresses of a country or region. For example, this can be a state, a province, an oblast, or a prefecture. For Spain, this is the province and not the autonomous community (for example, "Barcelona" and not "Catalonia"). Many countries don't use an administrative area in postal addresses. For example, in Switzerland, this should be left unpopulated.

locality

string

Optional. Generally refers to the city or town portion of the address. Examples: US city, IT comune, UK post town. In regions of the world where localities are not well defined or do not fit into this structure well, leave locality empty and use address_lines.

sublocality

string

Optional. Sublocality of the address. For example, this can be a neighborhood, borough, or district.

address_lines[]

string

Unstructured address lines describing the lower levels of an address.

Because values in address_lines do not have type information and may sometimes contain multiple values in a single field (for example, "Austin, TX"), it is important that the line order is clear. The order of address lines should be "envelope order" for the country or region of the address. In places where this can vary (for example, Japan), address_language is used to make it explicit (for example, "ja" for large-to-small ordering and "ja-Latn" or "en" for small-to-large). In this way, the most specific line of an address can be selected based on the language.

The minimum permitted structural representation of an address consists of a region_code with all remaining information placed in the address_lines. It would be possible to format such an address very approximately without geocoding, but no semantic reasoning could be made about any of the address components until it was at least partially resolved.

Creating an address only containing a region_code and address_lines and then geocoding is the recommended way to handle completely unstructured addresses (as opposed to guessing which parts of the address should be localities or administrative areas).

recipients[]

string

Optional. The recipient at the address. This field may, under certain circumstances, contain multiline information. For example, it might contain "care of" information.

organization

string

Optional. The name of the organization at the address.

TimeOfDay

Represents a time of day. The date and time zone are either not significant or are specified elsewhere. An API may choose to allow leap seconds. Related types are google.type.Date and google.protobuf.Timestamp.

Fields
hours

int32

Hours of a day in 24 hour format. Must be greater than or equal to 0 and typically must be less than or equal to 23. An API may choose to allow the value "24:00:00" for scenarios like business closing time.

minutes

int32

Minutes of an hour. Must be greater than or equal to 0 and less than or equal to 59.

seconds

int32

Seconds of a minute. Must be greater than or equal to 0 and typically must be less than or equal to 59. An API may allow the value 60 if it allows leap-seconds.

nanos

int32

Fractions of seconds, in nanoseconds. Must be greater than or equal to 0 and less than or equal to 999,999,999.

TimeZone

Represents a time zone from the IANA Time Zone Database.

Fields
id

string

IANA Time Zone Database time zone. For example "America/New_York".

version

string

Optional. IANA Time Zone Database version number. For example "2019a".