הוספת תוויות לתמונות באמצעות ערכת ML ב-Android

אתם יכולים להשתמש ב-ML Kit כדי להוסיף תוויות לאובייקטים שזוהו בתמונה. מודל ברירת המחדל שמסופק עם ML Kit תומך ביותר מ-400 תוויות שונות.

תכונהלא מקובציםבחבילה
הטמעההמודל מורד באופן דינמי דרך Google Play Services.המודל מקושר באופן סטטי בזמן הבנייה.
גודל האפליקציההגודל גדל בכ-200KB.הגדלת הגודל בכ-5.7MB.
זמן האתחוליכול להיות שתצטרכו לחכות עד שהמודל יורד לפני השימוש הראשון.המודל זמין באופן מיידי

רוצה לנסות?

לפני שמתחילים

  1. בקובץ build.gradle ברמת הפרויקט, מוודאים שמאגר Maven של Google כלול בקטעים buildscript ו-allprojects.

  2. מוסיפים את התלויות של ספריות ML Kit ל-Android לקובץ Gradle ברמת האפליקציה של המודול, שבדרך כלל נקרא app/build.gradle. בוחרים אחת מהתלויות הבאות בהתאם לצרכים:

    כדי לארוז את המודל עם האפליקציה:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:image-labeling:17.0.9'
    }
    

    כדי להשתמש במודל ב-Google Play Services:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-image-labeling:16.0.8'
    }
    
  3. אם בוחרים להשתמש במודל ב-Google Play Services, אפשר להגדיר את האפליקציה כך שהמודל יורד אוטומטית למכשיר אחרי שהאפליקציה מותקנת מחנות Play. כדי לעשות זאת, מוסיפים את ההצהרה הבאה לקובץ AndroidManifest.xml של האפליקציה:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ica" >
          <!-- To use multiple models: android:value="ica,model2,model3" -->
    </application>
    

    אפשר גם לבדוק באופן מפורש את זמינות המודל ולבקש הורדה באמצעות ModuleInstallClient API של Google Play Services.

    אם לא מפעילים הורדות של מודלים בזמן ההתקנה או לא מבקשים הורדה מפורשת, המודל יורד בפעם הראשונה שמריצים את הכלי לסימון תוויות. בקשות ששולחים לפני שההורדה מסתיימת לא מניבות תוצאות.

עכשיו אפשר לתייג תמונות.

1. הכנת תמונת הקלט

ליצור אובייקט InputImage מהתמונה. התוויתן של התמונות פועל הכי מהר כשמשתמשים ב-Bitmap או, אם משתמשים ב-camera2 API, ב-YUV_420_888 media.Image, שהם מומלצים כשזה אפשרי.

אפשר ליצור אובייקט InputImage ממקורות שונים, שכל אחד מהם מוסבר בהמשך.

שימוש ב-media.Image

כדי ליצור אובייקט InputImage מאובייקט media.Image, למשל כשמצלמים תמונה במצלמה של מכשיר, מעבירים את אובייקט media.Image ואת הסיבוב של התמונה אל InputImage.fromMediaImage().

אם משתמשים בספריית CameraX, המחלקות OnImageCapturedListener ו-ImageAnalysis.Analyzer מחשבות את ערך הסיבוב בשבילכם.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

אם אתם לא משתמשים בספריית מצלמה שמספקת את זווית הסיבוב של התמונה, אתם יכולים לחשב אותה לפי זווית הסיבוב של המכשיר והכיוון של חיישן המצלמה במכשיר:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

לאחר מכן מעבירים את האובייקט media.Image ואת ערך מעלות הסיבוב אל InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

שימוש ב-URI של קובץ

כדי ליצור אובייקט InputImage מ-URI של קובץ, מעבירים את הקשר של האפליקציה ואת ה-URI של הקובץ אל InputImage.fromFilePath(). זה שימושי כשמשתמשים בACTION_GET_CONTENT intent כדי להנחות את המשתמש לבחור תמונה מאפליקציית הגלריה שלו.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

שימוש ב-ByteBuffer או ב-ByteArray

כדי ליצור אובייקט InputImage מ-ByteBuffer או מ-ByteArray, קודם צריך לחשב את זווית הסיבוב של התמונה כמו שמתואר למעלה לגבי קלט media.Image. לאחר מכן, יוצרים את האובייקט InputImage עם המאגר או המערך, יחד עם הגובה, הרוחב, פורמט קידוד הצבע וזווית הסיבוב של התמונה:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

שימוש ב-Bitmap

כדי ליצור אובייקט InputImage מאובייקט Bitmap, צריך להצהיר על הדברים הבאים:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

התמונה מיוצגת על ידי אובייקט Bitmap יחד עם מעלות הסיבוב.

2. הגדרה והרצה של הכלי לתוויות תמונות

כדי להוסיף תוויות לאובייקטים בתמונה, מעבירים את האובייקט InputImage לשיטה process של ImageLabeler.

  1. קודם כל, צריך ליצור מופע של ImageLabeler.

    כדי להשתמש בכלי לסימון תמונות במכשיר, צריך להצהיר על הדברים הבאים:

Kotlin

// To use default options:
val labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS)

// Or, to set the minimum confidence required:
// val options = ImageLabelerOptions.Builder()
//     .setConfidenceThreshold(0.7f)
//     .build()
// val labeler = ImageLabeling.getClient(options)

Java

// To use default options:
ImageLabeler labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS);

// Or, to set the minimum confidence required:
// ImageLabelerOptions options =
//     new ImageLabelerOptions.Builder()
//         .setConfidenceThreshold(0.7f)
//         .build();
// ImageLabeler labeler = ImageLabeling.getClient(options);
  1. לאחר מכן, מעבירים את התמונה לשיטה process():

Kotlin

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

3. קבלת מידע על אובייקטים עם תוויות

אם פעולת התיוג של התמונה מצליחה, רשימה של אובייקטים מסוג ImageLabel מועברת למאזין ההצלחה. כל אובייקט ImageLabel מייצג משהו שסומן בתמונה. מודל הבסיס תומך ביותר מ-400 תוויות שונות. אפשר לקבל את תיאור הטקסט של כל תווית, את האינדקס שלה מבין כל התוויות שהמודל תומך בהן ואת ציון מהימנות ההתאמה. לדוגמה:

Kotlin

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

Java

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

טיפים לשיפור הביצועים בזמן אמת

אם רוצים לתייג תמונות באפליקציה בזמן אמת, כדאי לפעול לפי ההנחיות הבאות כדי להשיג את קצב הפריימים הטוב ביותר:

  • אם משתמשים ב-API‏ Camera או ב-API‏ camera2, צריך להגביל את מספר הקריאות ל-API של תיוג התמונות. אם פריים חדש של סרטון יהיה זמין בזמן שהכלי לתוויות תמונות פועל, צריך להשליך את הפריים. דוגמה אפשר לראות במחלקה VisionProcessorBase באפליקציית הדוגמה למתחילים.
  • אם אתם משתמשים ב-API‏ CameraX, חשוב לוודא ששיטת הלחץ האחורי מוגדרת לערך ברירת המחדל שלה ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. כך מובטח שרק תמונה אחת תישלח לניתוח בכל פעם. אם ייווצרו עוד תמונות בזמן שהכלי לניתוח עסוק, הן יימחקו אוטומטית ולא יתווספו לתור להעברה. אחרי שהתמונה שמנותחת נסגרת על ידי קריאה ל-ImageProxy.close(), התמונה העדכנית הבאה תועבר.
  • אם אתם משתמשים בפלט של כלי התיוג של התמונות כדי להוסיף גרפיקה לתמונת הקלט, קודם צריך לקבל את התוצאה מ-ML Kit, ואז לעבד את התמונה ולהוסיף את הגרפיקה בשלב אחד. הרינדור מתבצע במשטח התצוגה רק פעם אחת לכל מסגרת קלט. אפשר לראות דוגמה במחלקות CameraSourcePreview ו- GraphicOverlay באפליקציה לדוגמה למתחילים.
  • אם אתם משתמשים ב-Camera2 API, צלמו תמונות בפורמט ImageFormat.YUV_420_888. אם משתמשים בגרסה ישנה יותר של Camera API, צריך לצלם תמונות בפורמט ImageFormat.NV21.