Segmentacja selfie za pomocą ML Kit na Androidzie

ML Kit udostępnia zoptymalizowany pakiet SDK do segmentacji selfie.

Komponenty narzędzia Selfie Segmenter są statycznie połączone z aplikacją w momencie jej tworzenia. Zwiększy to rozmiar pliku do pobrania aplikacji o około 4,5 MB, a opóźnienie interfejsu API może wynosić od 25 do 65 ms w zależności od rozmiaru obrazu wejściowego (pomiar wykonany na Pixelu 4).

Wypróbuj

Zanim zaczniesz

  1. W pliku build.gradle na poziomie projektu dodaj repozytorium Maven firmy Google do sekcji buildscriptallprojects.
  2. Dodaj zależności dla bibliotek ML Kit na Androida do pliku Gradle na poziomie aplikacji modułu, który zwykle znajduje się w tym miejscu: app/build.gradle
dependencies {
  implementation 'com.google.mlkit:segmentation-selfie:16.0.0-beta6'
}

1. Tworzenie instancji klasy Segmenter

Opcje segmentatora

Aby przeprowadzić segmentację obrazu, najpierw utwórz instancję Segmenter, określając te opcje:

Tryb wykrywania

Segmenter działa w 2 trybach. Wybierz opcję, która odpowiada Twojemu przypadkowi użycia.

STREAM_MODE (default)

Ten tryb jest przeznaczony do przesyłania strumieniowego klatek z filmu lub aparatu. W tym trybie segmentator wykorzystuje wyniki z poprzednich klatek, aby zwracać płynniejsze wyniki segmentacji.

SINGLE_IMAGE_MODE

Ten tryb jest przeznaczony dla pojedynczych, niezwiązanych ze sobą obrazów. W tym trybie segmentator przetwarza każdy obraz niezależnie, bez wygładzania klatek.

Włącz maskę rozmiaru surowego

Prosi segmentator o zwrócenie maski rozmiaru pierwotnego, która pasuje do rozmiaru danych wyjściowych modelu.

Rozmiar surowej maski (np. 256 x 256) jest zwykle mniejszy niż rozmiar obrazu wejściowego. Aby uzyskać rozmiar maski, zadzwoń pod numer SegmentationMask#getWidth()SegmentationMask#getHeight(), gdy włączysz tę opcję.

Jeśli nie określisz tej opcji, segmentator przeskaluje surową maskę, aby dopasować ją do rozmiaru obrazu wejściowego. Rozważ użycie tej opcji, jeśli chcesz zastosować dostosowaną logikę zmiany skali lub jeśli w Twoim przypadku użycia zmiana skali nie jest potrzebna.

Określ opcje segmentacji:

Kotlin

val options =
        SelfieSegmenterOptions.Builder()
            .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE)
            .enableRawSizeMask()
            .build()

Java

SelfieSegmenterOptions options =
        new SelfieSegmenterOptions.Builder()
            .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE)
            .enableRawSizeMask()
            .build();

Utwórz instancję Segmenter. Przekaż określone opcje:

Kotlin

val segmenter = Segmentation.getClient(options)

Java

Segmenter segmenter = Segmentation.getClient(options);

2. Przygotowywanie obrazu wejściowego

Aby przeprowadzić segmentację obrazu, utwórz obiekt InputImage z obiektu Bitmap, media.Image, ByteBuffer, tablicy bajtów lub pliku na urządzeniu.

Możesz utworzyć InputImage obiekt z różnych źródeł. Każde z nich opisujemy poniżej.

Korzystanie z media.Image

Aby utworzyć obiekt InputImage z obiektu media.Image, np. podczas przechwytywania obrazu z aparatu urządzenia, przekaż obiekt media.Image i obrót obrazu do InputImage.fromMediaImage().

Jeśli używasz biblioteki CameraX, klasy OnImageCapturedListenerImageAnalysis.Analyzer obliczają wartość rotacji za Ciebie.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Jeśli nie używasz biblioteki aparatu, która podaje stopień obrotu obrazu, możesz obliczyć go na podstawie stopnia obrotu urządzenia i orientacji czujnika aparatu w urządzeniu:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Następnie przekaż obiekt media.Image i wartość stopnia obrotu do InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Używanie identyfikatora URI pliku

Aby utworzyć obiekt InputImage z identyfikatora URI pliku, przekaż kontekst aplikacji i identyfikator URI pliku do funkcji InputImage.fromFilePath(). Jest to przydatne, gdy używasz intencji ACTION_GET_CONTENT, aby poprosić użytkownika o wybranie obrazu z aplikacji galerii.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Używanie ByteBuffer lub ByteArray

Aby utworzyć obiekt InputImageByteBuffer lub ByteArray, najpierw oblicz stopień rotacji obrazu, jak opisano wcześniej w przypadku danych wejściowych media.Image. Następnie utwórz obiekt InputImage z buforem lub tablicą, a także z wysokością, szerokością, formatem kodowania kolorów i stopniem obrotu obrazu:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Korzystanie z Bitmap

Aby utworzyć obiekt InputImage z obiektu Bitmap, zadeklaruj:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Obraz jest reprezentowany przez obiekt Bitmap wraz ze stopniami obrotu.

3. Przetwarzanie obrazu

Przekaż przygotowany obiekt InputImage do metody process obiektu Segmenter.

Kotlin

Task<SegmentationMask> result = segmenter.process(image)
       .addOnSuccessListener { results ->
           // Task completed successfully
           // ...
       }
       .addOnFailureListener { e ->
           // Task failed with an exception
           // ...
       }

Java

Task<SegmentationMask> result =
        segmenter.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<SegmentationMask>() {
                            @Override
                            public void onSuccess(SegmentationMask mask) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. Pobieranie wyniku segmentacji

Wynik segmentacji możesz uzyskać w ten sposób:

Kotlin

val mask = segmentationMask.getBuffer()
val maskWidth = segmentationMask.getWidth()
val maskHeight = segmentationMask.getHeight()

for (val y = 0; y < maskHeight; y++) {
  for (val x = 0; x < maskWidth; x++) {
    // Gets the confidence of the (x,y) pixel in the mask being in the foreground.
    val foregroundConfidence = mask.getFloat()
  }
}

Java

ByteBuffer mask = segmentationMask.getBuffer();
int maskWidth = segmentationMask.getWidth();
int maskHeight = segmentationMask.getHeight();

for (int y = 0; y < maskHeight; y++) {
  for (int x = 0; x < maskWidth; x++) {
    // Gets the confidence of the (x,y) pixel in the mask being in the foreground.
    float foregroundConfidence = mask.getFloat();
  }
}

Pełny przykład użycia wyników segmentacji znajdziesz w przykładzie szybkiego startu ML Kit.

Wskazówki dotyczące poprawy skuteczności

Jakość wyników zależy od jakości obrazu wejściowego:

  • Aby ML Kit uzyskał dokładny wynik segmentacji, obraz powinien mieć rozmiar co najmniej 256 x 256 pikseli.
  • Na dokładność może też wpływać słaba ostrość obrazu. Jeśli wyniki nie będą zadowalające, poproś użytkownika o ponowne zrobienie zdjęcia.

Jeśli chcesz używać segmentacji w aplikacji działającej w czasie rzeczywistym, postępuj zgodnie z tymi wytycznymi, aby uzyskać najlepszą liczbę klatek na sekundę:

  • Użyj konta STREAM_MODE.
  • Rozważ robienie zdjęć w niższej rozdzielczości. Pamiętaj jednak o wymaganiach dotyczących wymiarów obrazu w tym interfejsie API.
  • Rozważ włączenie opcji maski rozmiaru pierwotnego i połączenie całej logiki zmiany rozmiaru. Na przykład zamiast najpierw zezwalać interfejsowi API na zmianę rozmiaru maski w celu dopasowania jej do rozmiaru obrazu wejściowego, a potem ponownie zmieniać jej rozmiar w celu dopasowania do rozmiaru widoku na potrzeby wyświetlania, po prostu poproś o maskę w rozmiarze pierwotnym i połącz te 2 kroki w 1.
  • Jeśli używasz interfejsu API Camera lub camera2, ogranicz wywołania detektora. Jeśli podczas działania detektora pojawi się nowa klatka wideo, odrzuć ją. Przykład znajdziesz w klasie VisionProcessorBase w przykładowej aplikacji z krótkiego wprowadzenia.
  • Jeśli używasz interfejsu CameraX API, upewnij się, że strategia ograniczenia przepustowości ma wartość domyślną ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Gwarantuje to, że do analizy będzie przesyłany tylko 1 obraz naraz. Jeśli w czasie, gdy analizator jest zajęty, zostanie wygenerowanych więcej obrazów, zostaną one automatycznie odrzucone i nie zostaną umieszczone w kolejce do dostarczenia. Gdy analizowany obraz zostanie zamknięty przez wywołanie ImageProxy.close(), zostanie dostarczony kolejny najnowszy obraz.
  • Jeśli używasz danych wyjściowych detektora do nakładania grafiki na obraz wejściowy, najpierw uzyskaj wynik z ML Kit, a następnie w jednym kroku wyrenderuj obraz i nałóż na niego grafikę. Jest on renderowany na powierzchni wyświetlacza tylko raz dla każdej ramki wejściowej. Przykład znajdziesz w klasach CameraSourcePreview GraphicOverlay w przykładowej aplikacji z krótkiego wprowadzenia.
  • Jeśli używasz interfejsu Camera2 API, rób zdjęcia w formacie ImageFormat.YUV_420_888. Jeśli używasz starszego interfejsu Camera API, rób zdjęcia w formacie ImageFormat.NV21.