此数据集包含经过混淆处理的数据,这些数据可以模拟实际的 Google Analytics(分析)4 实现所生成的真实数据集。某些字段将包含占位值,包括 <Other>、NULL 和 ''。由于经过了混淆处理,因此数据集的内部一致性可能会受到一定限制。
使用数据集
Cloud 控制台提供了一个用于查询表的界面。您可以使用 BigQuery 界面访问 flood it 数据集。
如果未显示编辑器标签页,则点击 add_box编写新查询。
将以下查询复制并粘贴到“编辑器”字段中。此查询将显示数据集中的唯一身份事件数、用户数和天数。
SELECT
COUNT(*) AS event_count,
COUNT(DISTINCT user_pseudo_id) AS user_count,
COUNT(DISTINCT event_date) AS day_count
FROM `firebase-public-project.analytics_153293282.events_*`
[null,null,["最后更新时间 (UTC):2024-04-22。"],[[["\u003cp\u003eThe \u003ccode\u003eflood it\u003c/code\u003e dataset, available in BigQuery, contains 114 days of obfuscated Google Analytics data from the Flood-It! mobile game.\u003c/p\u003e\n"],["\u003cp\u003eUsers can explore this dataset using the BigQuery sandbox for free, with options for enabling billing for larger queries.\u003c/p\u003e\n"],["\u003cp\u003eThe dataset offers insights into user behavior and game interactions but has limitations due to data obfuscation.\u003c/p\u003e\n"],["\u003cp\u003eProvided instructions guide users on accessing and querying the dataset within the BigQuery UI.\u003c/p\u003e\n"],["\u003cp\u003eFurther resources are available to learn more about BigQuery, Google Analytics data schemas, and visualization tools.\u003c/p\u003e\n"]]],["The provided content describes accessing and using the \"flood it\" dataset, a sample of obfuscated Google Analytics data from a puzzle game. Users need a Google Cloud project with BigQuery API enabled, accessible via the BigQuery UI. A sample query is provided to count unique events, users, and days. Users can run this and other queries and are directed to explore additional resources such as the schema, advanced queries, and using tools like Connected Sheets and Looker Studio.\n"],null,["# BigQuery sample dataset for Google Analytics gaming app implementation\n\n[Flood-It!](https://flood-it.app/) is puzzle game available both on the [Android](https://play.google.com/store/apps/details?id=com.labpixies.flood)\nand the [iOS](https://apps.apple.com/us/app/flood-it/id476943146) platforms. The app uses the standard Google\nAnalytics gaming app implementation through Firebase. The [`flood it`\ndataset](https://console.cloud.google.com/bigquery?p=firebase-public-project&d=analytics_153293282&t=events_20181003&page=table) available through the `firebase-public-project` BigQuery\nproject contains a sample of obfuscated BigQuery event export data for 114 days.\n\nPre-requisite\n-------------\n\n- You need access to a Google Cloud project with BigQuery API enabled.\n Complete the *Before you begin* section in the [BigQuery Quickstart guide](https://cloud.google.com/bigquery/docs/quickstarts/quickstart-web-ui#before-you-begin) to\n create a new Google Cloud project or to enable the BigQuery API in an\n existing one.\n\n- You can use the [BigQuery Sandbox mode](https://cloud.google.com/bigquery/docs/sandbox) for free with certain limitations.\n The [Free usage tier](https://cloud.google.com/bigquery/pricing#free-tier) should be sufficient to explore this dataset and run the\n sample queries. You can optionally [Enable Billing](https://cloud.google.com/billing/docs/how-to/modify-project) to go beyond the Free\n usage tier.\n\nLimitations\n-----------\n\nThis dataset contains obfuscated data that emulates what a real world dataset\nwould look like from an actual Google Analytics implementation. Certain fields\nwill contain placeholder values including `\u003cOther\u003e`, `NULL`, and `''`. Due to\nobfuscation, internal consistency of the dataset might be somewhat limited.\n\nUsing the dataset\n-----------------\n\n1. The Cloud Console provides an interface to query tables. You can use the\n [BigQuery UI](https://console.cloud.google.com/bigquery?p=firebase-public-project&d=analytics_153293282&t=events_20181003&page=table) to access the `flood it` dataset.\n\n2. If the **Editor** tab isn't visible, then click add_box **Compose new query**.\n\n3. Copy and paste the following query into the Editor field. This query will\n show to number of unique events, users, and days in the dataset.\n\n SELECT\n COUNT(*) AS event_count,\n COUNT(DISTINCT user_pseudo_id) AS user_count,\n COUNT(DISTINCT event_date) AS day_count\n FROM `firebase-public-project.analytics_153293282.events_*`\n\n4. For valid queries, a check mark will appear along with the amount of data\n that the query will process. This metric helps you determine the cost of\n running the query. \n\n \u003cbr /\u003e\n\n5. Click **Run** . The query results page will appear below the query window. \n\n \u003cbr /\u003e\n\n6. Try running some [sample queries](/analytics/bigquery/basic-queries).\n\nNext Steps\n----------\n\n- Learn more about the schema for [Google Analytics BigQuery event export\n schema](/analytics/bigquery/event-schema).\n\n- Run some of the [advanced queries](/analytics/bigquery/advanced-queries) on the dataset.\n\n- If you are not familiar with BigQuery, explore [BigQuery How-to Guides](https://cloud.google.com/bigquery/docs/how-to).\n\n- Use [Connected Sheets](https://cloud.google.com/bigquery/docs/connected-sheets) to analyze the dataset from Google Sheets\n spreadsheet.\n\n- [Visualize](https://cloud.google.com/bigquery/docs/visualize-looker-studio) the dataset using [Looker Studio](https://lookerstudio.google.com/)."]]