高级查询
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
本页面中的高级查询适用于 Google Analytics(分析)4 的 BigQuery 事件导出数据。如果您在寻找适用于 Universal Analytics 的同类资源,不妨参阅适用于 Universal Analytics 的 BigQuery 实战宝典。请先尝试基本查询,然后再试用高级查询。
已购买特定产品的客户购买的产品
以下查询会显示已购买特定产品的客户还购买了哪些其他产品。本示例并不假设客户是在同一订单中购买的这些产品。
优化版查询示例依靠 BigQuery 脚本功能来定义变量,用以声明要过滤的商品。虽然这并不能提高性能,但与使用 WITH
子句创建单值表相比,这种定义变量的方法可读性更高。简化版查询使用的就是前一种方法,即使用 WITH
子句。
简化版查询会创建一个单独的“产品 A 买家”名单,并与该数据联接。优化版查询则使用 ARRAY_AGG
函数创建一个列表,其中包含某位用户在各个订单中购买的所有商品。然后,使用外部 WHERE
子句,针对 target_item
过滤所有用户的购买列表,最后仅显示相关商品。
简化版
-- Example: Products purchased by customers who purchased a specific product.
--
-- `Params` is used to hold the value of the selected product and is referenced
-- throughout the query.
WITH
Params AS (
-- Replace with selected item_name or item_id.
SELECT 'Google Navy Speckled Tee' AS selected_product
),
PurchaseEvents AS (
SELECT
user_pseudo_id,
items
FROM
-- Replace table name.
`bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`
WHERE
-- Replace date range.
_TABLE_SUFFIX BETWEEN '20201101' AND '20210131'
AND event_name = 'purchase'
),
ProductABuyers AS (
SELECT DISTINCT
user_pseudo_id
FROM
Params,
PurchaseEvents,
UNNEST(items) AS items
WHERE
-- item.item_id can be used instead of items.item_name.
items.item_name = selected_product
)
SELECT
items.item_name AS item_name,
SUM(items.quantity) AS item_quantity
FROM
Params,
PurchaseEvents,
UNNEST(items) AS items
WHERE
user_pseudo_id IN (SELECT user_pseudo_id FROM ProductABuyers)
-- item.item_id can be used instead of items.item_name
AND items.item_name != selected_product
GROUP BY 1
ORDER BY item_quantity DESC;
优化版
-- Optimized Example: Products purchased by customers who purchased a specific product.
-- Replace item name
DECLARE target_item STRING DEFAULT 'Google Navy Speckled Tee';
SELECT
IL.item_name AS item_name,
SUM(IL.quantity) AS quantity
FROM
(
SELECT
user_pseudo_id,
ARRAY_AGG(STRUCT(item_name, quantity)) AS item_list
FROM
-- Replace table
`bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`, UNNEST(items)
WHERE
-- Replace date range
_TABLE_SUFFIX BETWEEN '20201201' AND '20201210'
AND event_name = 'purchase'
GROUP BY
1
),
UNNEST(item_list) AS IL
WHERE
target_item IN (SELECT item_name FROM UNNEST(item_list))
-- Remove the following line if you want the target_item to appear in the results
AND target_item != IL.item_name
GROUP BY
item_name
ORDER BY
quantity DESC;
用户每次购买会话的平均支出金额
以下查询会显示每位用户每次会话的平均支出金额。此查询仅考虑用户完成了购买的会话。
-- Example: Average amount of money spent per purchase session by user.
WITH
events AS (
SELECT
session.value.int_value AS session_id,
COALESCE(spend.value.int_value, spend.value.float_value, spend.value.double_value, 0.0)
AS spend_value,
event.*
-- Replace table name
FROM `bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*` AS event
LEFT JOIN UNNEST(event.event_params) AS session
ON session.key = 'ga_session_id'
LEFT JOIN UNNEST(event.event_params) AS spend
ON spend.key = 'value'
-- Replace date range
WHERE _TABLE_SUFFIX BETWEEN '20201101' AND '20210131'
)
SELECT
user_pseudo_id,
COUNT(DISTINCT session_id) AS session_count,
SUM(spend_value) / COUNT(DISTINCT session_id) AS avg_spend_per_session_by_user
FROM events
WHERE event_name = 'purchase' and session_id IS NOT NULL
GROUP BY user_pseudo_id
用户的最新会话 ID 和会话编号
以下查询提供用户列表在过去 4 天中最新 ga_session_id 和 ga_session_number 的列表。您可以提供 user_pseudo_id
列表或 user_id
列表。
user_pseudo_id
-- Get the latest ga_session_id and ga_session_number for specific users during last 4 days.
-- Replace timezone. List at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.
DECLARE REPORTING_TIMEZONE STRING DEFAULT 'America/Los_Angeles';
-- Replace list of user_pseudo_id's with ones you want to query.
DECLARE USER_PSEUDO_ID_LIST ARRAY<STRING> DEFAULT
[
'1005355938.1632145814', '979622592.1632496588', '1101478530.1632831095'];
CREATE TEMP FUNCTION GetParamValue(params ANY TYPE, target_key STRING)
AS (
(SELECT `value` FROM UNNEST(params) WHERE key = target_key LIMIT 1)
);
CREATE TEMP FUNCTION GetDateSuffix(date_shift INT64, timezone STRING)
AS (
(SELECT FORMAT_DATE('%Y%m%d', DATE_ADD(CURRENT_DATE(timezone), INTERVAL date_shift DAY)))
);
SELECT DISTINCT
user_pseudo_id,
FIRST_VALUE(GetParamValue(event_params, 'ga_session_id').int_value)
OVER (UserWindow) AS ga_session_id,
FIRST_VALUE(GetParamValue(event_params, 'ga_session_number').int_value)
OVER (UserWindow) AS ga_session_number
FROM
-- Replace table name.
`bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`
WHERE
user_pseudo_id IN UNNEST(USER_PSEUDO_ID_LIST)
AND RIGHT(_TABLE_SUFFIX, 8)
BETWEEN GetDateSuffix(-3, REPORTING_TIMEZONE)
AND GetDateSuffix(0, REPORTING_TIMEZONE)
WINDOW UserWindow AS (PARTITION BY user_pseudo_id ORDER BY event_timestamp DESC);
user_id
-- Get the latest ga_session_id and ga_session_number for specific users during last 4 days.
-- Replace timezone. List at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.
DECLARE REPORTING_TIMEZONE STRING DEFAULT 'America/Los_Angeles';
-- Replace list of user_id's with ones you want to query.
DECLARE USER_ID_LIST ARRAY<STRING> DEFAULT ['<user_id_1>', '<user_id_2>', '<user_id_n>'];
CREATE TEMP FUNCTION GetParamValue(params ANY TYPE, target_key STRING)
AS (
(SELECT `value` FROM UNNEST(params) WHERE key = target_key LIMIT 1)
);
CREATE TEMP FUNCTION GetDateSuffix(date_shift INT64, timezone STRING)
AS (
(SELECT FORMAT_DATE('%Y%m%d', DATE_ADD(CURRENT_DATE(timezone), INTERVAL date_shift DAY)))
);
SELECT DISTINCT
user_pseudo_id,
FIRST_VALUE(GetParamValue(event_params, 'ga_session_id').int_value)
OVER (UserWindow) AS ga_session_id,
FIRST_VALUE(GetParamValue(event_params, 'ga_session_number').int_value)
OVER (UserWindow) AS ga_session_number
FROM
-- Replace table name.
`bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`
WHERE
user_id IN UNNEST(USER_ID_LIST)
AND RIGHT(_TABLE_SUFFIX, 8)
BETWEEN GetDateSuffix(-3, REPORTING_TIMEZONE)
AND GetDateSuffix(0, REPORTING_TIMEZONE)
WINDOW UserWindow AS (PARTITION BY user_pseudo_id ORDER BY event_timestamp DESC);
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2024-04-22。
[null,null,["最后更新时间 (UTC):2024-04-22。"],[[["\u003cp\u003eThis page provides advanced BigQuery queries for analyzing Google Analytics 4 event export data, going beyond basic queries.\u003c/p\u003e\n"],["\u003cp\u003eIt includes queries to identify products frequently purchased together, calculate average spending per purchase session, and retrieve the latest session information for specific users.\u003c/p\u003e\n"],["\u003cp\u003eThe queries are demonstrated with examples and explanations, including simplified and optimized versions where applicable.\u003c/p\u003e\n"],["\u003cp\u003eBefore using these advanced queries, it's recommended to familiarize yourself with the basic BigQuery queries for Google Analytics 4.\u003c/p\u003e\n"],["\u003cp\u003eUsers of Universal Analytics can find similar resources in the BigQuery cookbook for Universal Analytics linked on the page.\u003c/p\u003e\n"]]],["This document provides advanced BigQuery queries for Google Analytics event data. It details how to identify other products purchased by customers who bought a specific item, offering both simplified and optimized query examples that filter purchase lists. Another query calculates the average amount spent per purchase session per user. Lastly, it outlines how to retrieve the latest session ID and number for users, with examples for both `user_pseudo_id` and `user_id` lists.\n"],null,["# Advanced queries\n\nThe advanced queries in this page apply to the BigQuery event export data for\nGoogle Analytics. See [BigQuery cookbook for Universal Analytics](https://support.google.com/analytics/answer/4419694) if you are\nlooking for the same resource for Universal Analytics. Try the [basic queries](/analytics/bigquery/basic-queries)\nfirst before trying out the advanced ones.\n\n### Products purchased by customers who purchased a certain product\n\nThe following query shows what other products were purchased by customers who\npurchased a specific product. This example does not assume that the products\nwere purchased in the same order.\n\nThe optimized example relies on BigQuery scripting features to define a variable\nthat declares which items to filter on. While this does not improve performance,\nthis is a more readable approach for defining variables compared creating a\nsingle value table using a `WITH` clause. The simplified query uses the latter\napproach using the `WITH` clause.\n\nThe simplified query creats a separate list of \"Product A buyers\" and does a\njoin with that data. The optimized query, instead, creates a list of all items a\nuser has purchased across orders using the `ARRAY_AGG` function. Then using the\nouter `WHERE` clause, purchase lists across all users are filtered for the\n`target_item` and only relevant items are shown. \n\n### Simplified\n\n -- Example: Products purchased by customers who purchased a specific product.\n --\n -- `Params` is used to hold the value of the selected product and is referenced\n -- throughout the query.\n\n WITH\n Params AS (\n -- Replace with selected item_name or item_id.\n SELECT 'Google Navy Speckled Tee' AS selected_product\n ),\n PurchaseEvents AS (\n SELECT\n user_pseudo_id,\n items\n FROM\n -- Replace table name.\n `bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`\n WHERE\n -- Replace date range.\n _TABLE_SUFFIX BETWEEN '20201101' AND '20210131'\n AND event_name = 'purchase'\n ),\n ProductABuyers AS (\n SELECT DISTINCT\n user_pseudo_id\n FROM\n Params,\n PurchaseEvents,\n UNNEST(items) AS items\n WHERE\n -- item.item_id can be used instead of items.item_name.\n items.item_name = selected_product\n )\n SELECT\n items.item_name AS item_name,\n SUM(items.quantity) AS item_quantity\n FROM\n Params,\n PurchaseEvents,\n UNNEST(items) AS items\n WHERE\n user_pseudo_id IN (SELECT user_pseudo_id FROM ProductABuyers)\n -- item.item_id can be used instead of items.item_name\n AND items.item_name != selected_product\n GROUP BY 1\n ORDER BY item_quantity DESC;\n\n### Optimized\n\n -- Optimized Example: Products purchased by customers who purchased a specific product.\n\n -- Replace item name\n DECLARE target_item STRING DEFAULT 'Google Navy Speckled Tee';\n\n SELECT\n IL.item_name AS item_name,\n SUM(IL.quantity) AS quantity\n FROM\n (\n SELECT\n user_pseudo_id,\n ARRAY_AGG(STRUCT(item_name, quantity)) AS item_list\n FROM\n -- Replace table\n `bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`, UNNEST(items)\n WHERE\n -- Replace date range\n _TABLE_SUFFIX BETWEEN '20201201' AND '20201210'\n AND event_name = 'purchase'\n GROUP BY\n 1\n ),\n UNNEST(item_list) AS IL\n WHERE\n target_item IN (SELECT item_name FROM UNNEST(item_list))\n -- Remove the following line if you want the target_item to appear in the results\n AND target_item != IL.item_name\n GROUP BY\n item_name\n ORDER BY\n quantity DESC;\n\n### Average amount of money spent per purchase session by user\n\nThe following query shows the average amount of money spent per session by each\nuser. This takes into account only the sessions where the user made a purchase. \n\n -- Example: Average amount of money spent per purchase session by user.\n\n WITH\n events AS (\n SELECT\n session.value.int_value AS session_id,\n COALESCE(spend.value.int_value, spend.value.float_value, spend.value.double_value, 0.0)\n AS spend_value,\n event.*\n\n -- Replace table name\n FROM `bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*` AS event\n LEFT JOIN UNNEST(event.event_params) AS session\n ON session.key = 'ga_session_id'\n LEFT JOIN UNNEST(event.event_params) AS spend\n ON spend.key = 'value'\n\n -- Replace date range\n WHERE _TABLE_SUFFIX BETWEEN '20201101' AND '20210131'\n )\n SELECT\n user_pseudo_id,\n COUNT(DISTINCT session_id) AS session_count,\n SUM(spend_value) / COUNT(DISTINCT session_id) AS avg_spend_per_session_by_user\n FROM events\n WHERE event_name = 'purchase' and session_id IS NOT NULL\n GROUP BY user_pseudo_id\n\n### Latest Session Id and Session Number for users\n\nThe following query provides the list of the latest ga_session_id and\nga_session_number from last 4 days for a list of users. You can provide either a\n`user_pseudo_id` list or a `user_id` list. \n\n### user_pseudo_id\n\n -- Get the latest ga_session_id and ga_session_number for specific users during last 4 days.\n\n -- Replace timezone. List at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.\n DECLARE REPORTING_TIMEZONE STRING DEFAULT 'America/Los_Angeles';\n\n -- Replace list of user_pseudo_id's with ones you want to query.\n DECLARE USER_PSEUDO_ID_LIST ARRAY\u003cSTRING\u003e DEFAULT\n [\n '1005355938.1632145814', '979622592.1632496588', '1101478530.1632831095'];\n\n CREATE TEMP FUNCTION GetParamValue(params ANY TYPE, target_key STRING)\n AS (\n (SELECT `value` FROM UNNEST(params) WHERE key = target_key LIMIT 1)\n );\n\n CREATE TEMP FUNCTION GetDateSuffix(date_shift INT64, timezone STRING)\n AS (\n (SELECT FORMAT_DATE('%Y%m%d', DATE_ADD(CURRENT_DATE(timezone), INTERVAL date_shift DAY)))\n );\n\n SELECT DISTINCT\n user_pseudo_id,\n FIRST_VALUE(GetParamValue(event_params, 'ga_session_id').int_value)\n OVER (UserWindow) AS ga_session_id,\n FIRST_VALUE(GetParamValue(event_params, 'ga_session_number').int_value)\n OVER (UserWindow) AS ga_session_number\n FROM\n -- Replace table name.\n `bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`\n WHERE\n user_pseudo_id IN UNNEST(USER_PSEUDO_ID_LIST)\n AND RIGHT(_TABLE_SUFFIX, 8)\n BETWEEN GetDateSuffix(-3, REPORTING_TIMEZONE)\n AND GetDateSuffix(0, REPORTING_TIMEZONE)\n WINDOW UserWindow AS (PARTITION BY user_pseudo_id ORDER BY event_timestamp DESC);\n\n### user_id\n\n -- Get the latest ga_session_id and ga_session_number for specific users during last 4 days.\n\n -- Replace timezone. List at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.\n DECLARE REPORTING_TIMEZONE STRING DEFAULT 'America/Los_Angeles';\n\n -- Replace list of user_id's with ones you want to query.\n DECLARE USER_ID_LIST ARRAY\u003cSTRING\u003e DEFAULT ['\u003cuser_id_1\u003e', '\u003cuser_id_2\u003e', '\u003cuser_id_n\u003e'];\n\n CREATE TEMP FUNCTION GetParamValue(params ANY TYPE, target_key STRING)\n AS (\n (SELECT `value` FROM UNNEST(params) WHERE key = target_key LIMIT 1)\n );\n\n CREATE TEMP FUNCTION GetDateSuffix(date_shift INT64, timezone STRING)\n AS (\n (SELECT FORMAT_DATE('%Y%m%d', DATE_ADD(CURRENT_DATE(timezone), INTERVAL date_shift DAY)))\n );\n\n SELECT DISTINCT\n user_pseudo_id,\n FIRST_VALUE(GetParamValue(event_params, 'ga_session_id').int_value)\n OVER (UserWindow) AS ga_session_id,\n FIRST_VALUE(GetParamValue(event_params, 'ga_session_number').int_value)\n OVER (UserWindow) AS ga_session_number\n FROM\n -- Replace table name.\n `bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`\n WHERE\n user_id IN UNNEST(USER_ID_LIST)\n AND RIGHT(_TABLE_SUFFIX, 8)\n BETWEEN GetDateSuffix(-3, REPORTING_TIMEZONE)\n AND GetDateSuffix(0, REPORTING_TIMEZONE)\n WINDOW UserWindow AS (PARTITION BY user_pseudo_id ORDER BY event_timestamp DESC);"]]