![ISDASOIL/Africa/v1/aluminium_extractable](https://developers.google.cn/earth-engine/datasets/images/ISDASOIL/ISDASOIL_Africa_v1_aluminium_extractable_sample.png?hl=zh-cn)
- 数据集可用性
- 2001-01-01T00:00:00Z–2017-01-01T00:00:00Z
- 数据集提供程序
- iSDA
- Earth Engine 代码段
-
ee.Image("ISDASOIL/Africa/v1/aluminium_extractable")
- 标签
说明
土壤深度为 0-20 厘米和 20-50 厘米的可提取铝含量,预测的均值和标准差。
必须使用 exp(x/10)-1
将像素值转换回来。
Innovative Solutions for Decision Agriculture Ltd. (iSDA) 使用机器学习、遥感数据和包含 10 万多份已分析土壤样品的训练集,在 30 米像素大小的范围内预测了土壤性质。
如需了解详情,请参阅常见问题解答和技术信息文档。如需提交问题或请求支持,请访问 ISDAsoil 网站。
在茂密丛林地区(通常位于非洲中部),模型准确性较低,因此可能会出现条纹(条带)等伪影。
频段
像素大小
30 米
乐队
名称 | 单位 | 最小值 | 最大值 | 说明 |
---|---|---|---|---|
mean_0_20 |
ppm | 3 | 80 | 铝,可提取,预测的平均值(深度 0-20 厘米) |
mean_20_50 |
ppm | 4 | 79 | 铝,可提取,预测平均值(深度 20-50 厘米) |
stdev_0_20 |
ppm | 1 | 53 | 铝,可提取,深度 0-20 厘米的标准差 |
stdev_20_50 |
ppm | 1 | 51 | 铝,可提取,深度 20-50 厘米的标准差 |
使用条款
使用条款
引用
引用:
Hengl, T., Miller, M.A.E., Križan, J., et al. 使用双尺度集成机器学习技术,以 30 米的空间分辨率绘制了非洲土壤性质和营养成分图。Sci Rep 11, 6130 (2021). doi:10.1038/s41598-021-85639-y
Hengl, T., Miller, M.A.E., Križan, J., et al. 使用双尺度集成机器学习技术,以 30 米的空间分辨率绘制了非洲土壤性质和营养成分图。Sci Rep 11, 6130 (2021). doi:10.1038/s41598-021-85639-y
DOI
使用 Earth Engine 进行探索
Code Editor (JavaScript)
var mean_0_20 = '<RasterSymbolizer>' + '<ColorMap type="ramp">' + '<ColorMapEntry color="#000004" label="0-21.2" opacity="1" quantity="31"/>' + '<ColorMapEntry color="#0C0927" label="21.2-35.6" opacity="1" quantity="36"/>' + '<ColorMapEntry color="#231151" label="35.6-53.6" opacity="1" quantity="40"/>' + '<ColorMapEntry color="#410F75" label="53.6-65.7" opacity="1" quantity="42"/>' + '<ColorMapEntry color="#5F187F" label="65.7-72.7" opacity="1" quantity="43"/>' + '<ColorMapEntry color="#7B2382" label="72.7-80.5" opacity="1" quantity="44"/>' + '<ColorMapEntry color="#982D80" label="80.5-89" opacity="1" quantity="45"/>' + '<ColorMapEntry color="#B63679" label="89-98.5" opacity="1" quantity="46"/>' + '<ColorMapEntry color="#D3436E" label="98.5-108.9" opacity="1" quantity="47"/>' + '<ColorMapEntry color="#EB5760" label="108.9-120.5" opacity="1" quantity="48"/>' + '<ColorMapEntry color="#F8765C" label="120.5-133.3" opacity="1" quantity="49"/>' + '<ColorMapEntry color="#FD9969" label="133.3-147.4" opacity="1" quantity="50"/>' + '<ColorMapEntry color="#FEBA80" label="147.4-163" opacity="1" quantity="51"/>' + '<ColorMapEntry color="#FDDC9E" label="163-199.3" opacity="1" quantity="53"/>' + '<ColorMapEntry color="#FCFDBF" label="199.3-1800" opacity="1" quantity="55"/>' + '</ColorMap>' + '<ContrastEnhancement/>' + '</RasterSymbolizer>'; var mean_20_50 = '<RasterSymbolizer>' + '<ColorMap type="ramp">' + '<ColorMapEntry color="#000004" label="0-21.2" opacity="1" quantity="31"/>' + '<ColorMapEntry color="#0C0927" label="21.2-35.6" opacity="1" quantity="36"/>' + '<ColorMapEntry color="#231151" label="35.6-53.6" opacity="1" quantity="40"/>' + '<ColorMapEntry color="#410F75" label="53.6-65.7" opacity="1" quantity="42"/>' + '<ColorMapEntry color="#5F187F" label="65.7-72.7" opacity="1" quantity="43"/>' + '<ColorMapEntry color="#7B2382" label="72.7-80.5" opacity="1" quantity="44"/>' + '<ColorMapEntry color="#982D80" label="80.5-89" opacity="1" quantity="45"/>' + '<ColorMapEntry color="#B63679" label="89-98.5" opacity="1" quantity="46"/>' + '<ColorMapEntry color="#D3436E" label="98.5-108.9" opacity="1" quantity="47"/>' + '<ColorMapEntry color="#EB5760" label="108.9-120.5" opacity="1" quantity="48"/>' + '<ColorMapEntry color="#F8765C" label="120.5-133.3" opacity="1" quantity="49"/>' + '<ColorMapEntry color="#FD9969" label="133.3-147.4" opacity="1" quantity="50"/>' + '<ColorMapEntry color="#FEBA80" label="147.4-163" opacity="1" quantity="51"/>' + '<ColorMapEntry color="#FDDC9E" label="163-199.3" opacity="1" quantity="53"/>' + '<ColorMapEntry color="#FCFDBF" label="199.3-1800" opacity="1" quantity="55"/>' + '</ColorMap>' + '<ContrastEnhancement/>' + '</RasterSymbolizer>'; var stdev_0_20 = '<RasterSymbolizer>' + '<ColorMap type="ramp">' + '<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="5"/>' + '<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="9"/>' + '<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="10"/>' + '<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="12"/>' + '<ColorMapEntry color="#440154" label="high" opacity="1" quantity="14"/>' + '</ColorMap>' + '<ContrastEnhancement/>' + '</RasterSymbolizer>'; var stdev_20_50 = '<RasterSymbolizer>' + '<ColorMap type="ramp">' + '<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="5"/>' + '<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="9"/>' + '<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="10"/>' + '<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="12"/>' + '<ColorMapEntry color="#440154" label="high" opacity="1" quantity="14"/>' + '</ColorMap>' + '<ContrastEnhancement/>' + '</RasterSymbolizer>'; Map.setCenter(25, -3, 2); var raw = ee.Image("ISDASOIL/Africa/v1/aluminium_extractable"); Map.addLayer( raw.select(0).sldStyle(mean_0_20), {}, "Aluminium, extractable, mean visualization, 0-20 cm"); Map.addLayer( raw.select(1).sldStyle(mean_20_50), {}, "Aluminium, extractable, mean visualization, 20-50 cm"); Map.addLayer( raw.select(2).sldStyle(stdev_0_20), {}, "Aluminium, extractable, stdev visualization, 0-20 cm"); Map.addLayer( raw.select(3).sldStyle(stdev_20_50), {}, "Aluminium, extractable, stdev visualization, 20-50 cm"); var converted = raw.divide(10).exp().subtract(1); Map.addLayer( converted.select(0), {min: 0, max: 100}, "Aluminium, extractable, mean, 0-20 cm");