-
可可概率模型 2025a
注意:此数据集尚未接受同行评审。如需了解详情,请参阅此 GitHub README。此图片集提供了每像素估计的底层区域被商品占据的概率。概率估算值以 10 米为单位提供,由 … 农业 生物多样性 保护 作物 eudr forestdatapartnership -
咖啡概率模型 2025a
注意:此数据集尚未接受同行评审。如需了解详情,请参阅此 GitHub README。此图片集提供了每像素估计的底层区域被商品占据的概率。概率估算值以 10 米为单位提供,由 … 农业 生物多样性 保护 作物 eudr forestdatapartnership -
Forest Persistence v0
注意:此数据集尚未接受同行评审。如需了解详情,请参阅与此模型关联的 GitHub README。此图片提供了每个像素的得分(介于 0 到 1 之间),表示像素区域在 2020 年是否被未受干扰的森林所占据。这些得分如下: 生物多样性 保护 森林砍伐 eudr 森林生物量 forestdatapartnership -
2025a 版棕榈树概率模型
注意:此数据集尚未接受同行评审。如需了解详情,请参阅此 GitHub README。此图片集提供了每像素估计的底层区域被商品占据的概率。概率估算值以 10 米为单位提供,由 … 农业 生物多样性 保护 作物 eudr forestdatapartnership -
橡胶树概率模型 2025a
注意:此数据集尚未接受同行评审。如需了解详情,请参阅此 GitHub README。此图片集提供了每像素估计的底层区域被商品占据的概率。概率估算值以 10 米为单位提供,由 … 农业 生物多样性 保护 作物 eudr forestdatapartnership
Datasets tagged forestdatapartnership in Earth Engine
[null,null,[],[[["\u003cp\u003eThis collection of datasets provides probability models for identifying the presence of cocoa, palm, and rubber trees, as well as undisturbed forest, at a 10-meter resolution.\u003c/p\u003e\n"],["\u003cp\u003eThe datasets are developed by the Forest Data Partnership and are intended to support biodiversity, conservation, and land use analysis.\u003c/p\u003e\n"],["\u003cp\u003eEach dataset offers per-pixel probability scores, indicating the likelihood of a specific land cover type being present.\u003c/p\u003e\n"],["\u003cp\u003eThese datasets are pre-review and users should refer to the associated GitHub README for detailed information.\u003c/p\u003e\n"]]],["Four datasets provide per-pixel probability estimates for land cover types: cocoa, palm, and rubber trees, all at 10-meter resolution, and forest persistence in 2020 which is scored between 0-1 to indicate undisturbed forest. All datasets are pre-review and have linked GitHub READMEs for further details. The data relates to biodiversity, conservation, crops, and land use and are associated with the forestdatapartnership project.\n"],null,["# Datasets tagged forestdatapartnership in Earth Engine\n\n-\n\n |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### Cocoa Probability model 2025a](/earth-engine/datasets/catalog/projects_forestdatapartnership_assets_cocoa_model_2025a) |\n | Note: This dataset is not yet peer-reviewed. Please see this GitHub README for more information. This image collection provides estimated per-pixel probability that the underlying area is occupied by the commodity. The probability estimates are provided at 10 meter resolution, and have been generated by ... |\n | [agriculture](/earth-engine/datasets/tags/agriculture) [biodiversity](/earth-engine/datasets/tags/biodiversity) [conservation](/earth-engine/datasets/tags/conservation) [crop](/earth-engine/datasets/tags/crop) [eudr](/earth-engine/datasets/tags/eudr) [forestdatapartnership](/earth-engine/datasets/tags/forestdatapartnership) |\n\n-\n\n |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### Coffee Probability model 2025a](/earth-engine/datasets/catalog/projects_forestdatapartnership_assets_coffee_model_2025a) |\n | Note: This dataset is not yet peer-reviewed. Please see this GitHub README for more information. This image collection provides estimated per-pixel probability that the underlying area is occupied by the commodity. The probability estimates are provided at 10 meter resolution, and have been generated by ... |\n | [agriculture](/earth-engine/datasets/tags/agriculture) [biodiversity](/earth-engine/datasets/tags/biodiversity) [conservation](/earth-engine/datasets/tags/conservation) [crop](/earth-engine/datasets/tags/crop) [eudr](/earth-engine/datasets/tags/eudr) [forestdatapartnership](/earth-engine/datasets/tags/forestdatapartnership) |\n\n-\n\n |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### Forest Persistence v0](/earth-engine/datasets/catalog/projects_forestdatapartnership_assets_community_forests_ForestPersistence_2020) |\n | Note: This dataset is not yet peer-reviewed. Please see the GitHub README associated with this model for more information. This image provides a per-pixel score (in \\[0, 1\\]) that indicates whether the pixel area is occupied by undisturbed forest in year 2020. These scores are ... |\n | [biodiversity](/earth-engine/datasets/tags/biodiversity) [conservation](/earth-engine/datasets/tags/conservation) [deforestation](/earth-engine/datasets/tags/deforestation) [eudr](/earth-engine/datasets/tags/eudr) [forest-biomass](/earth-engine/datasets/tags/forest-biomass) [forestdatapartnership](/earth-engine/datasets/tags/forestdatapartnership) |\n\n-\n\n |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### Palm Probability model 2025a](/earth-engine/datasets/catalog/projects_forestdatapartnership_assets_palm_model_2025a) |\n | Note: This dataset is not yet peer-reviewed. Please see this GitHub README for more information. This image collection provides estimated per-pixel probability that the underlying area is occupied by the commodity. The probability estimates are provided at 10 meter resolution, and have been generated by ... |\n | [agriculture](/earth-engine/datasets/tags/agriculture) [biodiversity](/earth-engine/datasets/tags/biodiversity) [conservation](/earth-engine/datasets/tags/conservation) [crop](/earth-engine/datasets/tags/crop) [eudr](/earth-engine/datasets/tags/eudr) [forestdatapartnership](/earth-engine/datasets/tags/forestdatapartnership) |\n\n-\n\n |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### Rubber Tree Probability model 2025a](/earth-engine/datasets/catalog/projects_forestdatapartnership_assets_rubber_model_2025a) |\n | Note: This dataset is not yet peer-reviewed. Please see this GitHub README for more information. This image collection provides estimated per-pixel probability that the underlying area is occupied by the commodity. The probability estimates are provided at 10 meter resolution, and have been generated by ... |\n | [agriculture](/earth-engine/datasets/tags/agriculture) [biodiversity](/earth-engine/datasets/tags/biodiversity) [conservation](/earth-engine/datasets/tags/conservation) [crop](/earth-engine/datasets/tags/crop) [eudr](/earth-engine/datasets/tags/eudr) [forestdatapartnership](/earth-engine/datasets/tags/forestdatapartnership) |"]]