用于对线性规划进行建模和求解的引擎。以下示例会解析以下线性规划:
两个变量 x
和 y
:
0 ≤ x ≤ 10
0 ≤ y ≤ 5
限制:
0 ≤ 2 * x + 5 * y ≤ 10
0 ≤ 10 * x + 3 * y ≤ 20
目标:
尽可能提高 x + y
const engine = LinearOptimizationService.createEngine(); // Add variables, constraints and define the objective with addVariable(), // addConstraint(), etc Add two variables, 0 <= x <= 10 and 0 <= y <= 5 engine.addVariable('x', 0, 10); engine.addVariable('y', 0, 5); // Create the constraint: 0 <= 2 * x + 5 * y <= 10 let constraint = engine.addConstraint(0, 10); constraint.setCoefficient('x', 2); constraint.setCoefficient('y', 5); // Create the constraint: 0 <= 10 * x + 3 * y <= 20 constraint = engine.addConstraint(0, 20); constraint.setCoefficient('x', 10); constraint.setCoefficient('y', 3); // Set the objective to be x + y engine.setObjectiveCoefficient('x', 1); engine.setObjectiveCoefficient('y', 1); // Engine should maximize the objective engine.setMaximization(); // Solve the linear program const solution = engine.solve(); if (!solution.isValid()) { Logger.log(`No solution ${solution.getStatus()}`); } else { Logger.log(`Value of x: ${solution.getVariableValue('x')}`); Logger.log(`Value of y: ${solution.getVariableValue('y')}`); }
方法
详细文档
add Constraint(lowerBound, upperBound)
在模型中添加新的线性约束条件。约束条件的上限和下限是在创建时定义的。变量的系数是通过调用 Linear
定义的。
const engine = LinearOptimizationService.createEngine(); // Create a linear constraint with the bounds 0 and 10 const constraint = engine.addConstraint(0, 10); // Create a variable so we can add it to the constraint engine.addVariable('x', 0, 5); // Set the coefficient of the variable in the constraint. The constraint is now: // 0 <= 2 * x <= 5 constraint.setCoefficient('x', 2);
参数
名称 | 类型 | 说明 |
---|---|---|
lower | Number | 约束条件的下限 |
upper | Number | 约束条件的上限 |
返回
Linear
- 创建的约束条件
add Constraints(lowerBounds, upperBounds, variableNames, coefficients)
向模型批量添加约束条件。
const engine = LinearOptimizationService.createEngine(); // Add a boolean variable 'x' (integer >= 0 and <= 1) and a real (continuous >= // 0 and <= 100) variable 'y'. engine.addVariables( ['x', 'y'], [0, 0], [1, 100], [ LinearOptimizationService.VariableType.INTEGER, LinearOptimizationService.VariableType.CONTINUOUS, ], ); // Adds two constraints: // 0 <= x + y <= 3 // 1 <= 10 * x - y <= 5 engine.addConstraints( [0.0, 1.0], [3.0, 5.0], [ ['x', 'y'], ['x', 'y'], ], [ [1, 1], [10, -1], ], );
参数
名称 | 类型 | 说明 |
---|---|---|
lower | Number[] | 约束条件的下限 |
upper | Number[] | 约束条件的上限 |
variable | String[][] | 要设置系数的变量的名称 |
coefficients | Number[][] | 要设置的系数 |
返回
Linear
- 线性优化引擎
add Variable(name, lowerBound, upperBound)
向模型添加新的连续变量。系统会通过变量名称引用该变量。类型设置为 Variable
。
const engine = LinearOptimizationService.createEngine(); const constraint = engine.addConstraint(0, 10); // Add a boolean variable (integer >= 0 and <= 1) engine.addVariable('x', 0, 1, LinearOptimizationService.VariableType.INTEGER); // Add a real (continuous) variable. Notice the lack of type specification. engine.addVariable('y', 0, 100);
参数
名称 | 类型 | 说明 |
---|---|---|
name | String | 变量的唯一名称 |
lower | Number | 变量的下限 |
upper | Number | 变量的上限 |
返回
Linear
- 线性优化引擎
add Variable(name, lowerBound, upperBound, type)
向模型添加新变量。系统会通过变量名称引用该变量。
const engine = LinearOptimizationService.createEngine(); const constraint = engine.addConstraint(0, 10); // Add a boolean variable (integer >= 0 and <= 1) engine.addVariable('x', 0, 1, LinearOptimizationService.VariableType.INTEGER); // Add a real (continuous) variable engine.addVariable( 'y', 0, 100, LinearOptimizationService.VariableType.CONTINUOUS, );
参数
名称 | 类型 | 说明 |
---|---|---|
name | String | 变量的唯一名称 |
lower | Number | 变量的下限 |
upper | Number | 变量的上限 |
type | Variable | 变量类型,可以是 Variable 之一 |
返回
Linear
- 线性优化引擎
add Variable(name, lowerBound, upperBound, type, objectiveCoefficient)
向模型添加新变量。系统会通过变量名称引用该变量。
const engine = LinearOptimizationService.createEngine(); const constraint = engine.addConstraint(0, 10); // Add a boolean variable (integer >= 0 and <= 1) engine.addVariable( 'x', 0, 1, LinearOptimizationService.VariableType.INTEGER, 2, ); // The objective is now 2 * x. // Add a real (continuous) variable engine.addVariable( 'y', 0, 100, LinearOptimizationService.VariableType.CONTINUOUS, -5, ); // The objective is now 2 * x - 5 * y.
参数
名称 | 类型 | 说明 |
---|---|---|
name | String | 变量的唯一名称 |
lower | Number | 变量的下限 |
upper | Number | 变量的上限 |
type | Variable | 变量类型,可以是 Variable 之一 |
objective | Number | 变量的目标系数 |
返回
Linear
- 线性优化引擎
add Variables(names, lowerBounds, upperBounds, types, objectiveCoefficients)
将变量批量添加到模型。系统会按名称引用变量。
const engine = LinearOptimizationService.createEngine(); // Add a boolean variable 'x' (integer >= 0 and <= 1) and a real (continuous >=0 // and <= 100) variable 'y'. engine.addVariables( ['x', 'y'], [0, 0], [1, 100], [ LinearOptimizationService.VariableType.INTEGER, LinearOptimizationService.VariableType.CONTINUOUS, ], );
参数
名称 | 类型 | 说明 |
---|---|---|
names | String[] | 变量的唯一名称 |
lower | Number[] | 变量的下限 |
upper | Number[] | 变量的上限 |
types | Variable | 变量的类型,可以是 Variable 之一 |
objective | Number[] | 变量的目标系数 |
返回
Linear
- 线性优化引擎
set Maximization()
将优化方向设置为最大限度地提高线性目标函数的值。
const engine = LinearOptimizationService.createEngine(); // Add a real (continuous) variable. Notice the lack of type specification. engine.addVariable('y', 0, 100); // Set the coefficient of 'y' in the objective. // The objective is now 5 * y engine.setObjectiveCoefficient('y', 5); // We want to maximize. engine.setMaximization();
返回
Linear
- 线性优化引擎
set Minimization()
将优化方向设置为使线性目标函数最小化。
const engine = LinearOptimizationService.createEngine(); // Add a real (continuous) variable. Notice the lack of type specification. engine.addVariable('y', 0, 100); // Set the coefficient of 'y' in the objective. // The objective is now 5 * y engine.setObjectiveCoefficient('y', 5); // We want to minimize engine.setMinimization();
返回
Linear
- 线性优化引擎
set Objective Coefficient(variableName, coefficient)
设置线性目标函数中变量的系数。
const engine = LinearOptimizationService.createEngine(); // Add a real (continuous) variable. Notice the lack of type specification. engine.addVariable('y', 0, 100); // Set the coefficient of 'y' in the objective. // The objective is now 5 * y engine.setObjectiveCoefficient('y', 5);
参数
名称 | 类型 | 说明 |
---|---|---|
variable | String | 要设置系数的变量的名称 |
coefficient | Number | 目标函数中变量的系数 |
返回
Linear
- 线性优化引擎
solve()
求解当前线性规划问题,默认截止期限为 30 秒。返回找到的解决方案。
const engine = LinearOptimizationService.createEngine(); // Add variables, constraints and define the objective with addVariable(), // addConstraint(), etc engine.addVariable('x', 0, 10); // ... // Solve the linear program const solution = engine.solve(); if (!solution.isValid()) { throw `No solution ${solution.getStatus()}`; } Logger.log(`Value of x: ${solution.getVariableValue('x')}`);
返回
solve(seconds)
求解当前线性规划。返回找到的解决方案,以及它是否为最佳解决方案。
const engine = LinearOptimizationService.createEngine(); // Add variables, constraints and define the objective with addVariable(), // addConstraint(), etc engine.addVariable('x', 0, 10); // ... // Solve the linear program const solution = engine.solve(300); if (!solution.isValid()) { throw `No solution ${solution.getStatus()}`; } Logger.log(`Value of x: ${solution.getVariableValue('x')}`);
参数
名称 | 类型 | 说明 |
---|---|---|
seconds | Number | 解决问题的截止时间(以秒为单位);截止时间上限为 300 秒 |