이 대규모 공개 데이터 세트는 고해상도 50cm 위성 이미지에서 파생된 건물 윤곽선으로 구성됩니다. 아프리카, 라틴 아메리카, 카리브해, 남아시아, 동남아시아의 건물 감지 18억 건이 포함되어 있습니다. 추론은 5,800만 km²의 영역에 걸쳐 이루어졌습니다.
이 데이터 세트의 각 건물에는 지상에 있는 건물의 윤곽을 설명하는 다각형, 건물이 확실하다는 것을 나타내는 신뢰도 점수, 건물의 중심에 해당하는 플러스 코드가 포함됩니다. 건물 유형, 상세 주소, 지오메트리 외의 세부정보에 관한 정보가 없습니다.
건물 윤곽선은 인구 추정, 도시 계획, 인도주의적 대응부터 환경 및 기후 과학에 이르기까지 다양한 중요한 애플리케이션에 유용합니다. 이 프로젝트는 가나에 기반을 두고 있으며, 초기에는 아프리카 대륙에 중점을 두었으나 남아시아, 동남아시아, 라틴 아메리카, 카리브해에 관한 새로운 업데이트도 제공합니다.
W. Sirko, S. Kashubin, M. Ritter, A. Annkah, Y.S.E. Bouchareb, Y. Dauphin,
D. Keysers, M. Neumann, M. Cisse, J.A. Quinn. 고해상도 위성 이미지에서 대륙 규모 건물 감지. arXiv:2107.12283, 2021.
이 대규모 공개 데이터 세트는 고해상도 50cm 위성 이미지에서 파생된 건물 윤곽선으로 구성되어 있습니다. 아프리카, 라틴 아메리카, 카리브해, 남아시아, 동남아시아의 건물 감지 18억 개가 포함되어 있습니다. 추론은 5,800만 km²의 영역에 걸쳐 이루어졌습니다. 이 데이터 세트의 각 건물에는 다음을 설명하는 다각형이 포함됩니다.
[null,null,[],[[["\u003cp\u003eThe Open Buildings dataset provides outlines of 1.8B buildings derived from 50 cm satellite imagery across Africa, Latin America, Caribbean, South Asia, and Southeast Asia.\u003c/p\u003e\n"],["\u003cp\u003eIt includes building footprints, a confidence score, and a Plus Code for each building, covering an area of 58M km².\u003c/p\u003e\n"],["\u003cp\u003eBuilding footprints can be used for various applications, including population estimation, urban planning, and environmental science.\u003c/p\u003e\n"],["\u003cp\u003eThe dataset is available under the CC-BY-4.0 license and is accessible through Google Earth Engine.\u003c/p\u003e\n"],["\u003cp\u003eThe dataset includes building confidence scores, allowing users to filter buildings based on the model's certainty.\u003c/p\u003e\n"]]],[],null,["# Open Buildings V3 Polygons\n\nDataset Availability\n: 2023-05-30T00:00:00Z--2023-05-30T00:00:00Z\n\nDataset Provider\n:\n\n\n [Google Research - Open Buildings](https://sites.research.google/open-buildings/)\n\nTags\n:\n [africa](/earth-engine/datasets/tags/africa) [asia](/earth-engine/datasets/tags/asia) [building](/earth-engine/datasets/tags/building) [built-up](/earth-engine/datasets/tags/built-up) [open-buildings](/earth-engine/datasets/tags/open-buildings) [population](/earth-engine/datasets/tags/population) [south-asia](/earth-engine/datasets/tags/south-asia) [southeast-asia](/earth-engine/datasets/tags/southeast-asia) [table](/earth-engine/datasets/tags/table) \nstructure \n\n#### Description\n\nThis large-scale open dataset consists of outlines of buildings derived\nfrom high-resolution 50 cm satellite imagery. It contains 1.8B building\ndetections in Africa, Latin America, Caribbean, South Asia and Southeast\nAsia. The inference spanned an area of 58M km².\n\nFor each building in this dataset we include the polygon describing its\nfootprint on the ground, a confidence score indicating how sure we are that\nthis is a building, and a [Plus Code](https://plus.codes/) corresponding to\nthe center of the building. There is no information about the type of\nbuilding, its street address, or any details other than its geometry.\n\nBuilding footprints are useful for a range of important applications: from\npopulation estimation, urban planning and humanitarian response to\nenvironmental and climate science. The project is based in Ghana, with an\ninitial focus on the continent of Africa and new updates on South Asia,\nSouth-East Asia, Latin America and the Caribbean.\n\nInference was carried out during May 2023.\n\nFor more details see the official\n[website](https://sites.research.google/open-buildings/) of the Open\nBuildings dataset.\n\n### Table Schema\n\n**Table Schema**\n\n| Name | Type | Description |\n|--------------------|----------|-----------------------------------------------------------------------------|\n| area_in_meters | DOUBLE | Area in square meters of the polygon. |\n| confidence | DOUBLE | Confidence score \\[0.65;1.0\\] assigned by the model. |\n| full_plus_code | STRING | The full [Plus Code](https://plus.codes/) at the building polygon centroid. |\n| longitude_latitude | GEOMETRY | Centroid of the polygon. |\n\n### Terms of Use\n\n**Terms of Use**\n\n[CC-BY-4.0](https://spdx.org/licenses/CC-BY-4.0.html)\n\n### Citations\n\nCitations:\n\n- W. Sirko, S. Kashubin, M. Ritter, A. Annkah, Y.S.E. Bouchareb, Y. Dauphin,\n D. Keysers, M. Neumann, M. Cisse, J.A. Quinn. Continental-scale building\n detection from high resolution satellite imagery.\n [arXiv:2107.12283](https://arxiv.org/abs/2107.12283), 2021.\n\n### Explore with Earth Engine\n\n| **Important:** Earth Engine is a platform for petabyte-scale scientific analysis and visualization of geospatial datasets, both for public benefit and for business and government users. Earth Engine is free to use for research, education, and nonprofit use. To get started, please [register for Earth Engine access.](https://console.cloud.google.com/earth-engine)\n\n### Code Editor (JavaScript)\n\n```javascript\n// Visualization of GOOGLE/Research/open-buildings/v3/polygons.\n\nvar t = ee.FeatureCollection('GOOGLE/Research/open-buildings/v3/polygons');\n\nvar t_065_070 = t.filter('confidence \u003e= 0.65 && confidence \u003c 0.7');\nvar t_070_075 = t.filter('confidence \u003e= 0.7 && confidence \u003c 0.75');\nvar t_gte_075 = t.filter('confidence \u003e= 0.75');\n\nMap.addLayer(t_065_070, {color: 'FF0000'}, 'Buildings confidence [0.65; 0.7)');\nMap.addLayer(t_070_075, {color: 'FFFF00'}, 'Buildings confidence [0.7; 0.75)');\nMap.addLayer(t_gte_075, {color: '00FF00'}, 'Buildings confidence \u003e= 0.75');\nMap.setCenter(3.389, 6.492, 17); // Lagos, Nigeria\nMap.setOptions('SATELLITE');\n```\n[Open in Code Editor](https://code.earthengine.google.com/?scriptPath=Examples:Datasets/GOOGLE/GOOGLE_Research_open-buildings_v3_polygons)\n\n### Visualize as a FeatureView\n\n\nA `FeatureView` is a view-only, accelerated representation of a\n`FeatureCollection`. For more details, visit the\n[`FeatureView` documentation.](/earth-engine/guides/featureview_overview)\n| **Important:** Earth Engine is a platform for petabyte-scale scientific analysis and visualization of geospatial datasets, both for public benefit and for business and government users. Earth Engine is free to use for research, education, and nonprofit use. To get started, please [register for Earth Engine access.](https://console.cloud.google.com/earth-engine)\n\n### Code Editor (JavaScript)\n\n```javascript\nvar fvLayer = ui.Map.FeatureViewLayer(\n 'GOOGLE/Research/open-buildings/v3/polygons_FeatureView');\n\nvar visParams = {\n rules: [\n {\n filter: ee.Filter.expression('confidence \u003e= 0.65 && confidence \u003c 0.7'),\n color: 'FF0000'\n },\n {\n filter: ee.Filter.expression('confidence \u003e= 0.7 && confidence \u003c 0.75'),\n color: 'FFFF00'\n },\n {\n filter: ee.Filter.expression('confidence \u003e= 0.75'),\n color: '00FF00'\n },\n ]\n};\n\nfvLayer.setVisParams(visParams);\nfvLayer.setName('Buildings');\n\nMap.setCenter(3.389, 6.492, 17); // Lagos, Nigeria\nMap.add(fvLayer);\nMap.setOptions('SATELLITE');\n```\n[Open in Code Editor](https://code.earthengine.google.com/?scriptPath=Examples:Datasets/GOOGLE/GOOGLE_Research_open-buildings_v3_polygons_FeatureView) \n[Open Buildings V3 Polygons](/earth-engine/datasets/catalog/GOOGLE_Research_open-buildings_v3_polygons) \nThis large-scale open dataset consists of outlines of buildings derived from high-resolution 50 cm satellite imagery. It contains 1.8B building detections in Africa, Latin America, Caribbean, South Asia and Southeast Asia. The inference spanned an area of 58M km². For each building in this dataset we include the polygon describing ... \nGOOGLE/Research/open-buildings/v3/polygons, africa,asia,building,built-up,open-buildings,population,south-asia,southeast-asia,table \n2023-05-30T00:00:00Z/2023-05-30T00:00:00Z \n-90 -180 90 180 \nGoogle Earth Engine \nhttps://developers.google.com/earth-engine/datasets\n\n- [](https://doi.org/https://sites.research.google/open-buildings/)\n- [](https://doi.org/https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_Research_open-buildings_v3_polygons)"]]